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Constitutive Modeling of Metal Matrix Composites Under Cyclic 
Loading 

AFOSR Grant No. F49620-93-1-0097DEF 
(Duration: 1/1/93 -12/31/95) 

AFOSR Grant No. F49620-92-J-0463 
(Duration: 9/1/92 -12/31/96) 

Principal Investigator: Dr. George Z. Voyiadjis 
Department of Civil and Environmental Engineering 
Louisiana State University 
Baton Rouge LA 70803 

OVERVIEW: 

The objectives of this project are: 
1. Formulation of a constitutive model for the analysis of fatigue damage in metal 

matrix composites 
2. Development of a finite element program in which the developed fatigue damage 

model will be integrated 
3. Involvement and training of graduate students in this advanced research in the 

area of fatigue damage of metal matrix composites 

The appendix contains copies of scientific articles which are representative of the publications 
written during the course of this project. 

SUMMARY OF ACCOMPLISHMENTS: 

The research accomplished during the project phase is described below in three major 
categories: 

I. Theoretical formulation of the cyclic and fatigue damage model 
II. Numerical Implementation of the model into a finite element code 
III. Extent of the involvement and participation of graduate students 

This is followed by a listing of the publications written during the course of this project, including 
books, refereed journal articles, conference proceedings and presentations. 

I. Theoretical Formulation: 

The theoretical formulation is based on the effective stress concept, and incorporates the damage- 
plasticity theory for composite materials using a micromechanical approach. In the micromechanicä 
approach the damage phenomenon due to applied cyclic/fatigue loading is considered at the 
constituent level. For this purpose a homogenization technique in the form of the Mori-Tanaka 
method is employed in order to allow for the distribution of the external applied loading to the 



individual constituents by means of the so-called stress and strain concentration tensors. The 
material behavior is then modeled at the constituent level based on the distributed loading. Elasto- 
plastic deformations as well as damage initiation and evolution processes are considered in the 
constituents individually. For this purpose individual constitutive equations to model the elasto- 
plastic behavior of and the damage evolution process in the constituents are established for each 
of the constituents. The damage evolution process includes the modeling of damage initiation and 
damage propagation up to final failure for which a specific failure criterion is applied. Through the 
use of the employed homogenization technique the overall composite material behavior, damage 
state and damage evolution is predicted based on the material behavior and damage evolution in 
the constituents. 

The developed micromechanical cyclic/fatigue damage model is based on a consistent formulation 
in the framework of continuum mechanics and on thermodynamical principles. The formulation for 
the damage evolution includes also the physical aspects of fatigue damage in metal matrix 
composites. Through the use of individual damage variables in the form of second order tensors 
for the constituents it is possible to model anisotropic damage development and anisotropic damage 
evolution in the constituents. Furthermore, the micromechanical approach allows to modeldifferent 
damage and failure modes in the composite material based on the failure in the individual 
constituent. Hence composite failure modes such as overload failure due to matrix cracking or fber 
cracking, depending on the type of composite, maybe modeled. Furthermore he introduction of an 
additional second order damage tensor for the fiber-matrix interface allows for the modeling of 
damage and failure modes due to debonding as well. 

II.        Numerical Implementation: 

The cyclic/fatigue damage constitutive model is implemented numerically and used to simulate 
damage development and evolution in metal matrix composites. Numerical problems encountered 
during the implementation and testing phase, such as numerical instabilities, divegence problems, 
have been addressed and appropriate measures to resolve them have been taken and included. 
Appropriate necessary material and model parameters are established based on available 
experimental results. The numerical implementation is used to simulate various loading cases for 
metal matrix composite specimen, and the results are then compared with the results from the 
experimental investigations. Comparison of the results from the numerical simulations with those 
from experiments show good agreement (see sample publications in the appendix) and 
substantiate the capabilities of the model. 



III.       Publications, Presentations and Organization of Symposia: 

A.        Books 

1. Voyiadjis, G. Z., and Allen, D. H., editors, Studies in Applied Mechanics, Vol. 44, Damage and 
Interfacial Debonding in Composites, 275 p., Elsevier, Amsterdam, 1996. 

2. Voyiadjis, G. Z., and Ju, J. W., editors, Studies in Applied Mechanics, Vol. 41, Inelasticity and 
Micromechanics of Metal Matrix Composites, 351 p., Elsevier, Amsterdam, 1994. 

3. Voyiadjis, G. Z., Bank, L. C, and Jacobs, L J., editors, Studies in Applied Mechanics, Vol. 35, 
Mechanics of Materials and Structures, 436 p., Elsevier, Amsterdam, 1994. 

4. Voyiadjis, G. Z., editor, Studies in Applied Mechanics, Vol. 34, Damage in Composite Materials, 
286 p., Elsevier, Amsterdam, 1993. 

B.        Refereed Journal Articles 

1. Voyiadjis, G. Z., and Zolochevsky, A., "Creep Theory for Transversely Isotropie Solids Sustaining 
Unilateral Damage," Mechanics Research Communications Journal, 7 manuscript pages (in 
review). 

2. Voyiadjis, G. Z., and Echle, R., "High Cycle Fatigue Damage Evolution in Uni-Directional Metal 
Matrix Composites Using a Micro-Mechanical Approach," Mechanics of Materials Journal, 37 
manuscript pages (in review). 

3. Park, T., and Voyiadjis, G. Z., "Kinematic Description of Damage," Journal of Applied Mechanics, 
ASME, 15 manuscript pages (in review). 

4. Voyiadjis, G. Z., and Kattan, P. I., "Equivalence of the Overall and Local Approaches to Damage 
in Metal Matrix Composites", International Journal of Plasticity, 24 manuscript pages (in review). 

5. Shi, G., and Voyiadjis, G. Z., "A New Free Energy for Plastic Damage Analysis," Mechanics 
Research Communications Journal, 7 manuscript pages (in press). 

6. Venson, A. R., and Voyiadjis, G. Z., "Damage Quantification in Metal Matrix Composites," Journal 
of Experimental Mechanics, 41 manuscript pages (in review). 

7. Voyiadjis, G. Z., and Deliktas, B., "Damage in MMCs Using the GCM: Theoretical Formulation," 
Journal of Composites Engineering, Part B, 42 manuscript pages (in press). 

8. Voyiadjis, G. Z., and Thiagarajan, G., "Micro and Macro Anisotropie Cyclic Damage-Plasticity 
Models for MMCs," International Journal of Engineering Science, 29 manuscript pages (in press). 

9. Voyiadjis, G. Z., and Park, T., "Anisotropie Damage Effect Tensors for the Symmetrization of the 
Effective Stress Tensor," Journal of Applied Mechanics, ASME, Vol. 64,1997, pp. 106-110. 



10. Voyiadjis, G. Z., and Park, T., "Local and Interfacial Damage Analysis of Metal Matrix Composites 
Using the Finite Element Method," Journal of Engineering Fracture Mechanics, Vol. 56, No. 4, 
1997, pp. 483-511. 

11. Park, T., and Voyiadjis, G. Z., "Damage Analysis and Elasto-Plastic Behavior of Metal Matrix 
Composites Using the Finite Element Method," Journal of Engineering Fracture Mechanics, Vol. 
56, No. 5, 1997, pp. 623-646. 

12. Voyiadjis, G. Z., and Kattan, P. I., "On the Symmetrization of the Effective Stress Tensor in 
Continuum Damage Mechanics," Journal of the Mechanical Behavior of Materials, Vol. 7, No. 2, 
1996, pp. 139-165. 

13. Voyiadjis, G. Z., and Park, T., "Anisotropie Damage for the Characterization of the Onset of 
Macro-Crack Initiation in Metals," International Journal of Damage Mechanics, Vol. 5, No. 1,1996, 
pp. 68-92. 

14. Voyiadjis, G. Z., and Park, T., "Stress and Strain Concentration Tensors for Damaged Fibrous 
Composites," Journal of the Mechanical Behavior Materials, Vol. 7, No. 2,1996, pp. 119-138. 

15. Voyiadjis, G. Z., and Zakaria Guelzim, "A Coupled Incremental Damage and Plasticity Theory for 
Metal Matrix Composites," Journal of the Mechanical Behavior of Materials, Vol. 6, No. 3,1996, 
pp. 193-219. 

16. Voyiadjis, G. Z., and Thiagarajan, G., "A Cyclic Anisotropie Plasticity Model for Metal Matrix 
Composites," International Journal of Plasticity, Vol. 12, No. 1,1996, pp. 69-91. 

17. Kattan, P. I., and Voyiadjis, G. Z., "Damage-Plasticity in a Uniaxially-Loaded Composite Lamina: 
Overall Analysis," International Journal of Solids and Structures, Vol. 33, No. 4, February 1996, 
pp. 555-576. 

18. Voyiadjis, G. Z., and Thiagarajan, G., "An Anisotropie Yield Surface Model for Directionally 
Reinforced Metal Matrix Composites," International Journal of Plasticity, Vol. 11, No. 8,1995, pp. 
867-894. 

19. Voyiadjis, G. Z., Venson, A. R., and Kattan, P. I., "Experimental Determination of Damage 
Parameters in Uniaxially-Loaded Metal Matrix Composites Using the Overall Approach," 
International Journal of Plasticity, Vol. 11, No. 8,1995, pp. 895-926. 

20. Voyiadjis, G. Z., and Park, T., "Anisotropie Damage of Fiber Reinforced MMC Using an Overall 
Damage Analysis," Journal of Engineering Mechanics, ASCE, Vol. 121, No. 11,1995, pp. 1209- 
1217. 

21. Voyiadjis, G. Z., and Venson, A. R., "Experimental Damage Investigation of a SiC-Ti Aluminide 
Metal Matrix Composite," International Journal of Damage Mechanics, Vol. 4, No. 4, October 
1995, pp. 338-361. 

22. Voyiadjis, G. Z., and Park T., "Local and Interfacial Damage Analysis of Metal Matrix Composites, 
" International Journal of Engineering Science, Vol. 33, No. 11,1995, pp. 1595-1621. 

23. Kattan, P. I., and Voyiadjis, G. Z., "Overall Damage and Elasto-Plastic Deformation in Fibrous 
Metal Matrix Composites," International Journal of Plasticity, Vol. 9, No. 8,1993, pp. 931-949. 



24. Voyiadjis, G. Z., and Kattan, P. I., "Damage of Fiber-Reinforced.Composite Materials with 
Micromechanical Characterization," International Journal of Solids and Structures, Vol. 30, 
No. 20, 1993, pp. 2757-2778. 

25. Voyiadjis, G. Z., and Kattan, P. I., "Local Approach to Damage in Elasto-Plastic Metal Matrix 
Composites," International Journal of Damage Mechanics, Vol. 2, No. 1,1993, pp. 92-114. 

26. Kattan, P. I., and Voyiadjis, G. Z., "A Plasticity-Damage Theory for Large Deformation of Solids, 
Part II: Applications to Finite Simple Shear," International Journal of Engineering Science, Vol. 31, 
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27. Kattan, P. I., and Voyiadjis, G. Z., "Micromechanical Modeling of Damage in Uniaxially Loaded 
Unidirectional Fiber-Reinforced Composite Laminae," International Journal of Solids and 
Structures, Vol. 30, No. 1, 1993, pp. 19-36. 

C.        Refereed Proceedings 

1. Voyiadjis, G. Z., Echle, R., "A Micro-Mechanical Fatigue Damage Model for Uni-Directional Metal 
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Composites," at the ME '94, The International Mechanical Engineering Congress and Exposition, 
Chicago, Illinois, November 1994. 

26. Voyiadjis, G. Z., "Constitutive Modeling of Plasticity with Damage in Metal Matrix Composites." 
Invited lecture presented at the National Science Foundation Workshop on Mechanics and 
Processing of Advanced Engineering Materials - II, Atlanta, Georgia, October, 1994. 

27. Voyiadjis, G. Z., Venson, A.R., and Kattan, P.I. "Damage Approaches to Unidirectional 
Elastoplastic Laminas Under Uniaxial Tension." Invited lecture presented at the 31st Annual 
Technical Meeting of the Society of Engineering Science, College Station, Texas, October 1994. 

28. Voyiadjis, G. Z., and Kattan, P. I., "Damage and Plastic Deformation in a Uniaxially Loaded Thin 
Composite Ply." Invited lecture presented at the First International Conference on Composites 
Engineering, New Orleans, Louisiana, August 1994. 

29. Voyiadjis, G. Z., and Kattan, P. I., "Micromechanical Modeling of Damage and Plasticity in 
Continuously Reinforced Metal Matrix Composites." Invited lecture presented at the 12th U.S. 
National Congress of Applied Mechanics, Seattle, Washington, June 1994. 

30. Voyiadjis, G. Z., "Damage Accumulation in Metal Matrix Composites." Invited lecture presented at 
the National Science Foundation Workshop on "Processing and Constitutive Modeling of 
Advanced Engineered Materials -1," Washington State University, Pullman, Washington, October 
1993. 



31. Voyiadjis, G. Z., "Damage in Metal Matrix Composites." Invited lecture presented in the 
Department of Mechanical Engineering, University of Delaware, Newark, Delaware, October 
1993. 

32. Voyiadjis, G. Z., Venson, A. R., and Kattan, P. I., "Damage Mechanism in Metal Matrix Composite 
Plates." Invited lecture presented at the Army Research Office Workshop on Dynamic Response 
of Composite Structures, New Orleans, Louisiana, August 1993. 

33. Voyiadjis, G. Z., Kattan, P. I., and Venson, A. R., "Evaluation of a Damage Tensor for Metal 
Matrix Composites." Presented at the MECAMAT '93, International Seminar on Micromechanics 
of Materials, Fontainebleau, France, July 1993. 

34. Voyiadjis, G. Z., and Sivakumar, S. M., "Cyclic Plasticity and Ratchetting." Presented at the 
MEETN'93, First SES-ASME-ASCE Joint Meeting on Mechanics, Bieniek Symposium on 
Mechanics of Materials and Structures, Charlottesville, VA, June 1993. 

35. Voyiadjis, G. Z., and Kattan, P. I., "Damage and Inelastic Deformation of SiC/Ti-Aluminide 
Composites." Invited lecture presented at the MEETN'93, First SES-ASME-ASCE Joint Meeting 
on Mechanics, Symposium on Inelastic Micromechanics in SiC/Ti Composites, Charlottesville, 
VA, June 1993. 

F. Symposia organized by Dr. G. Z. Voyiadjis: 

1. Co-Organizer and Co-Chairman of three sessions of the Symposium on "Failure Predictions in 
Dynamic Environments," to be held in the 1997 ASME, IMECE, Dallas, Texas, November 1997. 

2. Co-Organizer and Co-Chairman of eleven sessions of the Symposium on "Damage Mechanics in 
Engineering Materials," to be held in the Joint ASME/ASCE/SES Mechanics Conference, 
Northwestern University, Evanston, Illinois, June/July 1997. 

3. Organizer and Chairman of the Symposium on "High Temperature Fatigue in Metal Matrix 
Composites," held in the Society of Engineering Science 33rd Annual Technical Meeting, Arizona 
State University, Tempe, Arizona, October 1996. 

4. Co-Organizer and Co-Chairman of four sessions of the Symposium on "Damage and Interfacial 
Debonding in Composites," held in the 32nd Society of Engineering Science Meeting, New 
Orleans, Louisiana, October/November 1995. 

5. On the Organizing Committee of the 32nd Annual Technical Meeting of the Society of 
Engineering Science, New Orleans, Louisiana, October 29 - November 1,1995. 

6. Co-Organizer and Co-Chairman of four sessions of the Symposium on "Micromechanics of Fibers 
or Composites," held in the 2nd International Conference on Composites Engineering, New 
Orleans, Louisiana, August 1995. 

7. Co-Organizer and Co-Chairman of four sessions of the Symposium on "Fatigue of Composites," 
to be held in the 2nd International Conference on Composites Engineering, New Orleans, 
Louisiana, August 1995. 
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8. Co-Organizer and Co-Chairman of five sessions of the Symposium on "Inelasticity and 
Micromechanics of Metal Matrix Composites," held in the Twelfth U.S. National Congress of 
Applied Mechanics, Seattle, Washington, June/July 1994. 

9. Panel Member of the session on "Damage Accumulation and Life Prediction in Metal Matrix 
Composites," of the National Science Foundation Workshop on "Processing and Constitutive 
Modeling of Advanced Engineered Materials," Washington State University, Pullman, 
Washington, October 1993. 

10. Co-Organizer and Co-Chairman of four sessions of the Maciej P. Bieniek Symposium on 
"Mechanics of Materials and Structures," held in the MEET'N'93, First Joint ASCE-ASME-SES 
Mechanics Conference, University of Virginia, Charlottesville, Virginia, June 1993. 

Ph.D. Students Completed: 

1. Rainer Echle: A Micro - Mechanical Fatigue Damage Model for Uni - Directional Metal Matrix 
Composites; May 1997, LSU. 

2. Ganesh Thiagarajan: A Cyclic Plasticity/Damage Model for Metal Matrix Composites; May 
1996, LSU. Currently: Instructor, Department of Civil and Environmental Engineering, 
Louisiana State University, Baton Rouge, Louisiana. 

3. A. R. Venson: Experimental Macro and Microstructural Characterization of Damage for 
Metal Matrix Composites; December 1994, LSU. Currently: Assistant Professor, Department 
of Civil Engineering, University of Southwestern Louisiana, Lafayette, Louisiana. 

4. Taehyo Park: Finite Element Analysis of Damage and Elastic-Plastic Behavior of Metal 
Matrix Composites; December 1994, LSU. Currently: Research Associate, Department of 
Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana 

M.Sc. Students Completed: 

1.        Babur Deliktas: Damage in Metal Matrix Composite Using the Generalized Cells Model; May 
1996, LSU. 
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Abstract—Based on a six parameter general anisotropic yield surface proposed earlier by Voyiadjis 
and Thiagarajan (An Anisotropic Yield Surface Model for Directionally Reinforced Metal Matrix 
Composites, Int. J. Plasticity [1995]), a cyclic plasticity model to model the behavior of direction- 
ally reinforced metal matrix composite, has been proposed here. Apart from being able to model 
different initial yielding behavior along different stress directions, a number of features have been 
incorporated into the plasticity model. They include the usage of a proposed non-associative flow 
rule, kinematic hardening rule of Phillips type, a modified form of the bounding surface model for 
modelling the cyclic behavior, and the usage of a proposed form for evaluating the plastic modulus 
for anisotropic materials. Previous experimental data have been used for the evaluation of the yield 
surface parameters as well as those for the determination of the plastic modulus. The stress-strain 
results generated from the model have then been compared with those from the experiments. The 
behavior of the model under certain simulated cyclic loading situations has also been presented. 

I. INTRODUCTION 

This paper focuses upon the treatment of a metal matrix composite (MMC) as a con- 
tinuum and is an extension of the work presented earlier by the authors (Vojiadjis & 
Thiagarajan [1995]) wherein an anisotropic yield surface has been proposed with 
application to continuous directionally reinforced metal matrix composites. The yield 
surface proposed earlier has been correlated to the experimental observations of 
Dvorak et al. [1988] and Nigam et al. [1993]. A model is proposed herein to account for 
the material behavior of MMC which is transversely isotropic and subjected to cyclic, 
proportional and non-proportional loadings. The cyclic plasticity model for the aniso- 
tropic material is based on a modification of the bounding surface model proposed by 
Dafalias and Popov [1976] for the case of isotropic materials. 

It is also observed that the plastic strains that develop in an MMC are non-associative 
in nature. To account for this, a non-associative flow rule is proposed here, based on 
definitions of the yield and a complimentary yield function, termed as "constrained 
yield function." Also a suitable kinematic hardening rule is adopted here. 

Based on the above observations the elastoplastic stiffness matrix is derived for the 
cyclic plasticity model. This model has been implemented in a computer program to 
generate the stress-strain curves under different loading conditions. These curves have 
been generated along loading paths followed by Nigam et al. [1993]. Plastic strains are 
obtained and compared to those documented by Dvorak et al. [1988] and Nigam et al. 
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[1993]. Other simulated loading conditions are applied to the proposed model and 
results are presented here, to demonstrate the versatility of the model under various 
loading conditions. 

n. PROPOSED YIELD SURFACE 

Voyiadjis and Thiagarajan [1995] proposed an anisotropic yield surface for con- 
tinuous fiber reinforced metal matrix composites, using a fourth order anisotropic yield 
tensor M. Two coordinate systems are used, namely the local coordinate system and 
the global coordinate system (Fig. 1). In the local coordinate system, the coordinate 
axes coincide with the three principal axes of material anisotropy. The orientation of 
the fiber is defined in the global coordinate system. The loading is also defined with 
respect to the global coordinate system. 

The proposed yield function in the local coordinate axes is of the form shown below. 

Mijuäijäu -1=0 (1) 

where ätj is the overall state of stress in this system. M is the fourth order anisotropic 
yield tensor expressed as a function of two second order tensors ay and by as follows: 

M = M(a,b) (2) 

The expression for M is given as, 

Mijki = A (flyflw) + BiancOj,) + C(auaJk) + Z>( V*/) (3) 

where A, B, C and D are constants and ay and by are functions of the six strength 
parameters kt (/= 1, ..., 6). Three of these parameters are directly related to the axial 
strengths and the other three are shear strength parameters. They are used to define 
yielding for an anisotropic material. These parameters are measured and determined 
along the principal axes of anisotropy. ay and by are given as follows: 

*l 0 0 

fly = 0 h 0 
.0 0 *3 

"0 k4 ks 
by = *4 0 h 

*5 *6 0 

(4) 

(5) 

Substituting (3) into (1) we can express the yield equation in the local coordinate 
axes in component form as follows: 

(^ + *+q(*fcf, + *f ö^+*f öf3) 
+{2A){k\k2äuä2i. +kik35uä3i +^3^22^33) 

+(2(B + C)kxk2 + 4Dk\)d\2 + (2(B + Qk^ + 4Dk\)c?n 

+(2(B + Cjhk! + ADkl)^ = 0. 

(6) 



A cyclic anisotropic-plasticity model 71 

The constants A, B, C and D are not material parameters. The possible choices of 
combinations of these values are outlined by Voyiadjis and Thiagarajan [1995] The 
values of these constants chosen here for this implementation are A-\, B- C-£ and 
Z>=4. These values reduce the above equation to the following form. 

6 

^ = £(^»l+*2*22 + *3*33) 

- -{k\k2Ö\\Ö-22 + ^3^22^33 + *lMll^33) (7) 
9 

2.. .    . .„_,   .2, 
+ \ (*|*2 + *2)*?2 + | (*1*3 + *D*?3 + 3 (^^3 + *t)4> - 1-0. 

One can also express the yield equation in the global axes of reference as follows: 

VijMijkKTu-1=0. (8) 

The stresses are transformed from the global to the local axes of reference as follows 

&ij - dipCTpqdqj (9) 

where dy are the coefficients of the orthogonal transformation matrix. Assuming that 
the fibers are aligned along the x-axis (1-direction) one can write, 

dxj={Tn,rn,rn) (10) 

where 77,-, (/= 1,2,3) are the direction cosines of the fiber in the global coordinate system. 
A lamina of any arbitrary orientation is derived by rotating the principal axes of ani- 
sotropy about the z-axis(3-direction) of the global axes of reference. Hence one obtains 
<fv=(0, 0,1). The terms of d2J can then be derived from the condition 

dpidqi = 6pq. 00 

Substituting for 8y in the yield (1) one obtains 

OpqdipdjqMijkldkmdlnOtm -1=0. (12) 

From the above equation MiJki can be expressed as, 

Mijkl = Mpgrsdipdjgdkrdls- 0') 

Further details about the computation of the parameters, their reduction to certain well- 
known yield criteria and their comparison with the yield surfaces obtained from experi- 
mental evidence have been demonstrated in the paper by Voyiadjis and Thiagarajan [1995]. 

m. THEORETICAL DEVELOPMENT OF THE CONSTITUTIVE MODEL 

The description of the elasto-plastic behavior of the metal matrix composite, when 
treated as a continuum is a complex task. The fact that MMC is transversely isotropic 
and the presence of continuous fibers with their respective constraints, necessitates the 
usage of anisotropic hardening and non-associative flow rules. The formulation pro- 
posed here is also intended to describe the behavior of MMC under cyclic loading 
conditions. The bounding surface model is adopted here to simulate the mechanical 
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behavior of the material. In this paper, the thrust is thus on transversely isotropic 
materials. 

III. 1. Elastic behavior 

The elastic behavior of the composite material, treated as a homogeneous continuum 
with transversely isotropic properties has been defined Walpole [1969] and is used here. 
The linear constitutive relation is expressed as 

Oij - Qjkteu (14) 

where C is the fourth order elastic stiffness tensor relating the symmetric second order 
tensors a and e of stress and strain, respectively. For a transversely isotropic material 
the fourth order elastic stiffness tensor is given as follows: 

where, 

Qju = Ktijtu + Ekjlu + 2mtE)jk} + 2pEA
ijkl (15) 

tij = mu + 2ulu (16) 

Uj = rnrjf (17) 

Wtf = hj ~ m (18) 

E Ijki = 2 lm*mJi + mjk™ü - mijmu) (19) 

E1jki = 2 lm*lJi + maljk + mjiljk + mjkmu} (20) 

and *K' is the plane-strain bulk modulus, mt is the transverse shear modulus, p is the 
axial shear modulus and £ and v are the Young's Modulus and Poisson ratio, respec- 
tively, when the material is loaded in the fiber direction. For a transversely isotropic 
material the plane-strain bulk modulus can be defined in terms of the other four elastic 
constants. 

111.2. Non-associative flow rule 

It has been well established by now that the determination of plastic strains, for any 
anisotropic material in general, and a MMC in particular must adopt a non-associative 
flow rule. Dvorak etal. [1988] and Nigam et dl. [1993] have experimentally demonstrated 
this and have established that there is a tendency for the direction of plastic strains to 
be more inclined towards the shear direction in a combined transverse tension-shear 
loading situation. It has also been shown that there exists, to a large extent, plastic 
inextensibility along the fiber direction. 

To account for the above factors, a plastic potential function is proposed here, the 
form of which is based on the proposed yield function. The nature of this potential 
function is explained below. 

111.3. Proposed potential function 

In order to determine the plastic strain increments (c £) use is made of a non- 
associative flow rule as outlined earlier such that, 
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a-A|2- Pi) ,J       day 

where G is the plastic potential function. The potential function is defined later as a 
function of the yield function and the constrained yield function. The constrained yield 
function is defined such that it satisfies the condition of plastic inextensibility along the 
direction defined by r\. This is accomplished by defining a function g which is of the 
functional form of the yield function/ The function g is defined using the fourth order 
anisotropic yield tensor M and a constrained stress term ri} such that, 

g = riJMiJk,rkl-l. (22) 

The constraint that is introduced in the stress term is that the plastic strain increment is 
independent of the component of stress along a specified direction (defined here by i&). 
Following the procedure outlined by Spencer [1972] the constraint is incorporated mto 
the stress term as follows: 

nj = ay - Trm (23) 

where Truy is the reaction to an inextensibility constraint along the direction T|. Taking 
the inner product on both sides of (23) with rffl one obtains, 

One can impose the constraint is in the stress term rv as follows 

nfiiTy = 0. (25) 

Substituting this constraint in (24) one obtains, 

and using the condition r^iy = 1 it can be shown that 
T=ffijT)t^j. (27) 

Hence one can expand (23) as follows: 

Using the yield function and the function g defined above, the potential function G 
can now be defined as follows, 

G = w/+(1.0-w)g,    0<w<1.0. (29) 

In order to illustrate the capability of this potential function we consider the yield 
function in the an - an space. Assuming that r\ =(1,0,0) then/and g functions can be 
represented as shown in Fig. 2. Since r? =(1,0,0), this implies that the fiber is along the 
1-direction and the stress along this direction an does not influence yielding. Hence in 
Fig. 2 the yield function/represents yielding both axes whereas the constrained yield 
function g is parallel to the airaxis, physically representing the requirement that an 



74 G. Z. Voyiadjis and G. Thiagarajan 

does not influence yielding. The unit normals to these functions, which are also shown 
in Fig. 2, can be expressed in tensor form as follows: 

(30) 

'v~dav
,ttd^~n (31) 

where wi} and a J represent the normality to the two surfaces represented by/and g. 

n t^*L,n0g 

x-y: general axes of reference 
1-2: principal material axes 
 direction of fiber 

Fig. 1. Local and global axes of reference for a single lamina. 

O     Yield Surface T 

       Constrained Yield Surface'g' 
with Ti- (1,0,0) 

Fig. 2. Illustration of non-associative flow rule in <rn - «TU space. 
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The non-associativity of the flow rule in built into the definition of the potential 
function through the factor u. Based on the flow rule, one can define a second order 
tensor representing the direction of plastic strains as follows. 

ny = u4+(1.0-a;)nj.. (32) 

The experimental evidence that the plastic strains are predominantly along the shear 
direction can be incorporated into the flow rule by using a value of u in between 0.0 and 
1 0 A value of u = 1.0 gives a purely associative flow rule. Using a value of u=0.0 would 
result in the usage of only the function g in (21). For this case it can be easily shown 
that the plastic strains along the direction defined by r\ are zero. In the an - *a sPace 

in the local coordinate axes one thus obtains strains only along the shear direction. 
The actual incremental plastic strain direction is observed to be different from both 

iJ. and »f. To simplify the issue, one can assume that this deviation is constant in any 
stress space or loading level and measure the angle of deviation as 6, then w can be 
measured as follows. One can then express 6 as follows 

(33) 

(34) 

(35) 

(36) 

cos (6) = rtirfj 

cos(0) = u + (1 - w)»S»J- 

By measuring 6 at a defined loading level one can then derive the value of w that would 
be appropriate. 

Similarly for loading cases in the o^-on space, one can choose r\- (U,I,U) 
(although physically this does not represent the actual fiber direction). This enables one 
to control the direction of plastic strains in this space and hence one can incorporate 
the non-associativity of the flow rule in this stress-space. This is illustrated in Fig. 3. 

Q     Yield Surface T 

       Constrained Yield Surface *g* 
with q-(0.1,0) 

Fig. 3. Illustration of non-associative flow rule in on - an space. 
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The factor a; can be adjusted to suit experimentally determined values of the plastic 
strain. Constraints in multiple directions can simultaneously be defined using one 
equation by appropriately modifying (23), details of which are not presented here. The 
plastic strains can then be expressed as follows, 

tv-nr*« (37) 

= §"</ (38) 

where L = o = ö^n^ is the projection of the stress rate ay on riy and a > 0 (for plastic 
loading after yielding). H is the plastic modulus. A detailed description of the deter- 
mination of the plastic modulus for the anisotropic material is given later in this paper. 

III.4. Hardening rule 

To determine the shape and location of subsequent yield surfaces as loading/ 
unloading progresses, the hardening parameter is introduced in the yield function. 
From the experimental data of Dvorak et al. [1988] it has been demonstrated that the 
predominant form of hardening is kinematic hardening. Also no significant distortion 
of the shape of the yield surface has been reported. Using these observations as the 
basis for formulating the hardening rule, it is proposed to use here a purely kinematic 
hardening rule of the Phillips type. It is assumed that there is no significant change in 
the size of the initial yield surface. Hence the effect of "proportional hardening"— 
which accounts for different expansion of the yield surface in different directions—is 
ignored. This hardening is accounted for by modifying the form of the yield surface as 
follows. 

/= (ffij-aij)Mijk](au-au)-1.0. (39) 

The evolution equation for the kinematic hardening rule based on the Phillips rule can 
be expressed as follows. 

Qy = fl&ij (40) 

The above equation can be rewritten in the following form as follows, 

*U = \\an\\ltj (41) 

where 

lij = d<Ty/||d<7„|| (42) 

defines the unit tensor along the direction of loading. The norm of d,y, ||dr,||, is found 
from the consistency condition as follows. 

_2.a(/ + _Q.. = 0. (43) 
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For finite increments of loading and rate independent plasticity the constitutive 
relationships can be obtained by first expressing A/, for a constant M such that, 

A/=/(a + Aflr, a + Aa) -/(*, a) = 0 . 

Expanding the above equation one obtains 

Milieu + Aau - Qy - AQy)(<rw + Affu -au- Aau) 
-Maseru - OLij)(au - a«) - 1 = 0 

(44) 

Substituting for Aav from (41), as it is rate independent, it can be shown that || AQ„|| 

can be solved from the quadratic equation 

fl||Aa„||2-*||Aa„|| + c = 0 (45) 

b ^Mijkiioijlu + cuUj) + Mtjki(A<Tij!ki + hAata) (46) 

+Mijki{ctijlki + lijctki) 

a=Mijk,lijlki (47) 

c =Mijki(auAak] + Aauau) (48) 
+MUki(A(TijA(Tkj) - MijuiAoijCLu + oyAa«). 

Once the magnitude of ||Aa„|| is found, then the evolution of backstress for the yield 
surface is obtained and updated as follows: 

a*f» = af + Aaij. (49) 

IV. CYCLIC PLASTICITY MODEL 

The proposed plasticity model is further developed to model the behavior of the 
composite material under cyclic loading situations. To model this behavior, a modified 
form of the bounding surface model is used. The determination of the plastic modulus 
H is the main aim of this section. 

For initially isotropic materials the plastic modulus is usually expressed in functional 
form as 

H^H-il+g^ynS^S)} .. (50) 

where 5* and 6 are the proximity parameters and H* is the asymptotic value of the 
plastic modulus. Various functional forms for g(6J and/X^, 6) have been proposed 
by Dafalias and Popov [1976] and McDowell [1989]. Voyiadjis and Sivakumar [1991, 
1994] had proposed a more general form for this expression as, 

/f=/T[l+g(6in)C)-/(«in,«)] (51) 

where the extra term C is a parameter introduced to blend the Phillips's deviatoric stress 
rate direction rule for the motion of yield surfaces, when the yield and the bounding 
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surfaces are away from each other and the Tseng-Lee [1983] rule for nesting of yield 
surfaces, when the two surfaces are closer to each other. 

For isotropic materials, the functional form of the plastic modulus as defined by 
Dafalias and Popov [1976] is of the form 

H = H* + h6/{&m-6). (52) 

In the above equation, H* is the asymptotic value of the plastic modulus, A is a positive 
shape parameter and 6» is the initial value of the distance between the yield and the 
bounding surfaces when plastic behavior begins in the loading direction. For isotropic 
materials, the values of the three parameters H*, h and 6j„ would be the same, irre- 
spective of the location of the current stress point on the yield surface, and for loading 
along any direction. This is not the case for anisotropic materials. 

rV.l. Plastic modulus for initially anisotropic materials 

Most of the models mentioned above have been developed for initially isotropic 
materials, although anisotropy is induced due to plastic strains subsequently. In such 
cases it is assumed that both H* and 6* remain the same along any direction (at any 
point on the yield surface). However for initially anisotropic or orthotropic materials 
the asymptotic value of the plastic modulus H* need not, and in most cases will not, 
be the same for all points on the yield surface. For materials where we assume the 
behavior in tension and compression to be similar, it is reasonable to assume that at 
mirror image points of the yield surface, this asymptotic value of the plastic modulus is 
the same. 

In Fig. 4, which shows the yield and the bounding surfaces in the 0-22 - 0-12 stress 
space, points A and B are the location of the stress points for initial yielding for loading 

\C\ 

' Z >    Subsequent Yield Surface 

Subsequent Bounding Surface 

■*■ °22 

Fig. 4. Illustration to explain plastic modulus determination for an anisotropic material. 
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in the a-n and on respectively. From the two uniaxial stress-strain behaviors, it is 
observed that the plastic modulus and hence the values of the three parameters that are 
required to determine the plastic modulus, are different. 

In order to incorporate the above phenomenon, a matrix/tensor form of H should be 
used to provide for a selection of the hardening parameters corresponding to the type 
of loading that the composite is subjected to. On the other hand the form of (51) that is 
adopted for the determination of the plastic modulus is scalar and has three parameters 
that are scalar in nature. In this paper the authors propose the following form for the 
determination of the parameters, while maintaining their scalar nature. 

Consider the anisotropic yield surface proposed here in the (0-22 - on) stress 
subspace. It can be represented as an ellipse as shown in Fig. 4. One can assume the 
general location of the yield surface as shown. The location of a general stress point a 
when yielding has occurred—represented by point C in the figure—with respect to the 
center of the yield surface a, is represented by (a - a). The distance of C from the. 
center of the yield surface is then given by 

7 = y/(<7ij-<*ij)(<nj-Qij) •     " (53) 

A unit tensor along this direction can be written as 

&>ij=(0ij-(*ij)h- (54) 

As mentioned earlier the observed values of the parameters involved in the determi- 
nation of the plastic modulus are different along different loading directions. This 
could be achieved by using the tensors in the form of second order tensors 6™, Ay and 
H*r. These are then converted to a scalar valued form by taking the inner product 
of these tensors with another second order tensor p(j and representing the result as 
follows: 

H- - H)jPij (55) 

h = huPij (56) 

*ta = Spu ." (57) 

The expression for the plastic modulus can then be expressed as 

H = H* + h~6/{6™ - 6) - (58) 

where 6 is the distance between the stress point on the yield surface and the image point 
on the bounding surface, as explained later. 

Two possible choices for py are proposed here and the option of using either one 
would really depend on the observed physical behavior. 
IV. 1.1. Choice of py = Ay. This choice of py essentially states that the values of the 
parameters are dependent on the distance of the location of the stress point on the yield 
surface. This could be expressed as follows. 

H=H{i). (59) 
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*♦ a21 

O 
Loading Path 

Yield Surface 

Bounding Surface 

-./ 

'22 

Fig. 5. Loading path to illustrate appropriateness of the choice of pti. 

It ensures that the value of the parameters along the axial directions, assume the 
respective values. At intermediate points it is obtained through interpolation. Although 
these conditions are satisfied, sometimes this is not a very appropriate choice, especially 
under non-proportional loading. As shown in Fig. 5, if the composite is first loaded 
uniaxially along the 022 direction into the plastic range, the only non-zero term of A# is 
A22= 1-0. This ensures that the three values of the parameters chosen are those corre- 
sponding to those for uniaxial loading along this direction. If the material is then 
loaded along the a2i direction, the values of the parameters chosen would be close to 
the values that existed for the previous loading, since the subsequent location of the 
point on the yield surface is close to the previous point. However for loading along the 
shear direction it would be more reasonable for the parameters to assume those values 
corresponding to the shear direction. Hence this choice, which has been tried first in 
this model and found unsuitable for the above reason, might not be the best choice. 
IV.1.2. Choice of>y = /y. Since lv is the unit tensor along the loading direction the 
choice of ptj = //, would essentially ensure that the values of the parameters chosen are 
dependent on the direction of loading. This choice is adopted here in the proposed 
model, since it has been found to be more suitable. Also this model is thus open for 
adoption of any other suitable choices.. 

IV.2. Determination of bounding surface 

The initial bounding surface used here is an identical expansion of the initial yield 
surface. This is done by determining the ^-intercept of the bound lines at the zero 
plastic strain level, in the stress-plastic strain curve. The bounding surface is expressed 
as 

/*(4,/3y,fi0-,%)=0 (60) 
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where crf; is the image point on the bounding surface and ßy is its center and 

\ki 0 0" 
äij = 0 h 0 

.0 0 *3j 

r0 h ^51 su= kA 0 h 
M h 0. 

(61) 

(62) 

The values of k{(i = 1,..., 6) are computed from experimental data along the respec- 
tive axial directions. The initial yield and the initial bounding surfaces are assumed to 
be congruent. This is to ensure that the normals at the stress point on the yield surface 
and the image point on the bounding surface correspond to each other. For example, a 
uniaxial state of stress would correspond to the same uniaxial state of stress on the 
bounding surface. 

The motion of the bounding surface is assumed to be dependent on the motion of 
yielding surface and constrained such that when the two surfaces intersect, they do so 
tangentially. This is ensured by finding the image point on the bounding surface from 
the state of stress on the yield surface, such that the normals to the two surfaces at the 
respective points are identical. Given the state of stress on the yield surface one can find 
the normal to it n{j and using this value one can locate the image point on the bound- 
ing surface by solving a set of non-linear algebraic equations—using the Newton- 
Raphson technique. Since the normals to the two surfaces are the same, nb

tj — n{j. We 
can express nbj in terms of the bounding surface parameters and image point stress 
values. It can be expressed in functional form as follows: 

J-°fb/n2£L\ (63) 

All but one of the equations represented by nbj which are non-linear functions of the 
image point of stress on the bounding surface, are used along with the bounding sur- 
face equation (which is also a non-linear function of stresses). All the equations for «,*• 
cannot be used because they are interrelated by the expression nb-nbj—l. 

IV.3. Backstress for the bounding surface 

The evolution of the center of the bounding surface in the stress space as loading 
continues is related to the evolution of backstress for the yield surface as well as the 
relative distance between the stress point and the image point. As given in Dafalias and 
Popov [1976] it can be expressed as follows: 

where 

** = **-I'-lfJ—*; 

Mtf«K-»</)/ii*£-*»n 

(64) 

(65) 
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Here we use a modified form as follows, 

h -A     (\    R'^isUku- (66) 

As the two surfaces touch each other ny= 0 and hence ßy = ov for all subsequent 
loadings. From this increment, the total backstress for the bounding surface is then 
computed. 

The controlling parameter 6 in the determination of the plastic modulus H is then 
found from the formula 

V. ELASTO-PLASnC STIFFNESS MATRIX 

In order to determine the elasto-plastic matrix for the unidirectionally oriented 
MMC lamina, one has to incorporate all the procedures outlined above. Small defor- 
mations and rate independence of plastic strains are assumed. This allows one to use an 
additive decomposition of the incremental strain tensor dey such that, 

de0 = d<,. + d4 (68) 

where dej, is the elastic part and dej is the plastic part of the strain tensor. The incre- 
mental stress-strain relations can be expressed as follows: 

dfffj = CijkAt'u (69) 

= CflwCcUw - de'ä . (70) 

Using (38) for the plastic strain part we can write the above equation as follows: 

day = Cy*/(dew --£nu). (71) 

Equation (71) may also be expressed as follows: 

cry = Qjueu - Cyunucr/H. (72) 

Taking the inner product of both sides with n{j one obtains, 

Oijjiij = Cykinyiki - Cykinynuff/H = &. (73) 

Or, 

*(l+S^)«Q^. (74) 

From the above equation one can express ö as follows: 



A cyclic anisotropic-plasticity model 83 

Cy,ye„    H (?5) 

Hence the expression for plastic strains using (34) can be written explicitly as follows: 

, « CabcdPabutcd    „ (nc.\ 

Substituting this in the equation for the incremental stress-strain relations one obtains, 

d<7y as Cijkl 
'. Cgbcdfiabfccd    m 

tl T l*pqrsnpqnrs 
(77) 

.    =CiJkidcki-    '     r —• V*.) 
n T *~pqnnpqnn 

Interchanging the indices kl with cd in the second term of the above equation one 
obtains, 

j         si   J        CijedCabkinabncdd€ki (1Q^ 
da» = Qjkideu WTr—7T7,— ^   ] 

or, 
d(Ty = D^€W (80) 

where D^L is the elasto-plastic stiffness of the material and is expressed as follows: 
'ifld 

Dfkl = CijM-
C^ff^. (81) 

VI. NUMERICAL SIMULATION FOR GENERATING STRESS-STRAIN CURVES 

The above model has been built into a computer program MC-PLAST, for the 
generation of stress-strain curves. Input includes the elastic constants of the material, 
the initial yield and bounding surface parameters, the values of the plastic modulus 
constants and the non-associativity parameter u. This program also reads in a sequence 
of loading in incremental form to be applied and outputs stresses, strains and plastic 
strains at the end of each increment. 

In order to exhibit the validity of the proposed model, the model here is compared 
with results obtained from the experimental data of Dvorak et al. [1988] and Nigam et 
cd. [1993]. The parameters and constants have been determined from these experimental 
data. The experiments had been done using boron-aluminum tubular composite 
specimen having unidirectional lamina. The fibers are aligned along the direction of the 
axis of the tube. 

Under plane stress conditions, the component form of the yield surface (7) reduces to 
the following form: 
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g)(^i+^)-(|)(*i**n*2) (g2) 

From the experimental data the following values of yield stresses have been taken. 
<7Y, = 160.0 MPa, <r& = 45.0 MPa and a\ = 25.0 MPa. Using these data the following 
values of ku k2 and kA for the initial yield surface have been computed as kx = 0.0133, 
*2=0.0471, fc4=0.0421. 

A number of loading situations—both actual and simulated—are presented here in 
order to show the validity and the stability of the model. 

VI. 1. Experimental comparison and discussions 

The loading path shown in Table 1 that has been used by Nigam et al [1993] has been 
used for comparison. From the data they had presented in the paper, the following 
values for the bounding surface have been evaluated. crbn = 196.0 MPa, a^ = 91.5 
MPa and a^ = 34.0 MPa. This results in computed values of the initial bounding 
surface parameters of ki = 0.0108, k2 - 0.0232 and kA = 0.0323. The values for k3, ks 

and k6 are not needed here and have been taken to be zero. However in order to make 
the initial yield and bounding surface congruent, a value of k\ = 0.0065 is chosen and k4 is 
modified to k4 = 0.0338. This does not effect the outcome of results of this model because 
this modification affects the plastic behavior of the composite in the fiber direction. 
However for the MMC, since a relatively high value of the yield stress in the fiber 
direction is observed, it ensures relatively plastic inextensibility in the fiber direction. 

Table 1. Actual experimental loading sequence (and modelled) in 
an - an (Nigam>f al. (1993]) 

Point ff22 *12 
(MPa) (MPa) 

0 0.00 0.00 
1 18.00 0.00 
2 109.20 0.00 
3 1.20 0.00 
4 43.00 0.00 
5 70.00 41.20 
6 70.00 33.60 
7 1.00 20.50 
8 70.00 33.60 
9 34.10 28.00 

10 1.50 -19.00 
11 8.00 -9.50 
12 38.10 -9.40 
13 66.60 36.00 
14 62.00 29.75 
15 35.00 29.60 
16 6.50 -14.43 
17 8.00 -9.50 
18 38.00 -9.50 
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The computation of the plastic modulus constants is the next step in this process, i.e. 
the evaluation of and Wy and hy. Different values of these constants are evaluated from 
experimental results of the uniaxial stress-plastic strain curves along different stress 
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Fig. 6. Shear stress-plastic shear strain curve comparison of experimental and model generated results, using 
non-associative flow rule. 
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Fig. 7. Transverse stress-plastic strain curve comparison for experimental and model generated results, using 
non-associative flow rule. 
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directions. The values of these constants have been evaluated as follows. H*n -1,600, 
000 MPa, J^2 = 12,000 MPa and //J2 = 6000 MPa and the values of the other para- 
meter htj are A,,- - 9,650,000, A22 = 90,000 and h2l - 40,000 MPa, respectively. The other 
values of this tensor are assumed to be zero. 
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24 
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0.0040 0.0060 

Fig. 8. Shear stress-plastic shear strain curve comparison of experimental and model generated results, using 
associative flow rule. 
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Fig. 9. Transverse stress-plastic strain curve comparison for experimental and model generated results, using 
associative flow rule. 
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In order to incorporate the non-associativity of the flow rule that has been built into 
the model, the value of a> has been chosen, by trial and error, as w=0.5. 

Figure 7 shows the comparison between the experimentally obtained and model- 
generated c-22-^22 curve an<* Fig- 6 shows the same for ai\ - 2d(2- From the com- 
parison of the experimental results of Dvorak et al. [1988] and Nigam et al. [1993] and 
the model generated stress-strain curves, a reasonably good correlation is observed. In 
Figs 6 and 7 the prediction of plastic strains for the case of uniaxial loading and 
unloading in the ^22 direction Goading path 1-2, 2-3) is good. For reloading along a 
multi-axial path 4-5, where load is applied simultaneously along the 022 arid &2i 
directions, the model has been able to successfully predict the onset of yielding, which 
in the authors' opinion is a very significant fact, and the total magnitude of plastic 
strains reasonably well. 

The tendency for ratchetting to occur for cyclic loading, for five cycles of loading 
path 12-13-14-15-16-17 has also been observed. But the tendency to stabilize has 
been different for the experimental and model predicted results. This is because a 
drastic degradation of elastic behavior has been observed in the experimental results. 
For the results of the experimental behavior the readers are referred to the paper by 
Nigam et al. [1993]. It has been unable to measure this degradation in elastic behavior 
and incorporate them in the model, where a constant elastic behavior is assumed 
throughout the entire loading sequence. 

Another important feature that has been proposed here and used successfully is the 
non-associative flow rule for the prediction of plastic strains. In order to demonstrate 
that we must adopt a non-associative flow rule, the model is run with the same loading 
situation, but with u = 1.0, which results in the usage of an associated flow rule. Figures 8 
and 9 show the comparison of model and experimental results for this case. For a pure 
associative flow rule (w= 1.0) it is seen that plastic strains e^ have been overpredicted. 

100.0 

-100.0 
-0.0010 0.0010 

Fig. 10. Stress-plastic strain curve for simulated uniaxial cyclic loading of 032 stress only. 
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A factor of w=0.5 which incorporated non-associativity into the model has been 
successfully used to predict the plastic strains reasonably in this direction. 

A number of simulated cyclic loading situations have been run on this model. They 
are uniaxial cyclic loading in the 022 and <x\2 directions and also radial cyclic loading in 
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Fig. 11. Stress-plastic strain curve for simulated uniaxial cyclic loading for shear stress only. 
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the (<T22 - 0-12) space. Figures 10 and 11 show the simulated model predicted response 
under uniaxial cyclic loading in the a^ and a2i directions, respectively. Ratchetting 
behavior under constant mean stress is observed. Figure 12 shows the same for radial 
cyclic loading in the (0-22 - ^21) stress space. It is observed that the model is able to 
predict different behavior in different stress spaces during the loading process. 

The model presented here will be used in the micromechanical damage model 
proposed by Voyiadjis and Kattan [1993]. The proposed model will be used to 
characterize the in situ behavior of the matrix within the fiber. This is being currently 
investigated by the authors. 

VI.2. Comparison with other proposed models 

The plastic strains predicted by the proposed model have also been compared with those 
predicted by two micromechanical models, namely the Periodic Hexagonal Array (PHA) 
model developed by Dvorak and Teply [1985] and the self-consistent scheme of Hill [1948, 
1965] and Budiansky [1965] using the Mori-Tanaka [1973] averaging scheme for the eva- 
luation of the concentration factors by Lagoudas et al. [1991]. The data for the self-con- 
sistent and the PHA model have been taken from the paper by Lagoudas et al. [1991]. 

This comparison has been made in Fig. 6, which shows the comparison of the shear 
stress-plastic shear strain curves generated by the models along with those from the 
experimental data. It is seen that while the Mori-Tanaka and the PHA model results 
underpredict the plastic strains, the proposed model using the non-associative flow rule 
comes closer in its prediction. In the transverse direction Fig. 7 the PHA and the pro- 
posed model predict the plastic strains fairly well whereas the Mori-Tanaka model 
underpredicts here also. The PHA and the Mori-Tanaka model results have not been 
shown here to avoid congestion. 

vn. CONCLUSIONS 

This proposed continuum model for the elasto-plastic behavior of an MMC has been 
able to successfully capture and model certain trends and characteristics that have been 
observed experimentally. Primarily they are, the usage of a proposed non-associative 
flow rule to predict plastic strains, incorporation of the fiber-direction plastic inexten- 
sibility criterion, the usage of a proposed criterion for evaluating the plastic modulus 
and its incorporation into the cyclic plasticity model. Comparison with experimental 
data has shown reasonably good correlation and certain simulated cyclic loading 
situations demonstrate ratchetting behavior. One feature that is observed in the 
experimental results, namely the degradation of elastic constants, has however not been 
incorporated here as it has been found to be very diflBcult to measure them. 
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ABSTRACT: Improvement in design and enhancement in performance of aerospace vehicles calls 

for the development of advanced materials capable of sustaining the arising loading conditions 

while maintaining their structural integrity. Special consideration has to be given to the behavior 

of such materials under fatigue loading conditions which are dominating the flight regime loads. A 

micro-mechanical fatigue damage model for uni-directional metal matrix composites is proposed. 

Damage evolution is considered at the constituent level through the application of the Mori-Tanaka 

averaging scheme. Individual damage criteria for the constituents are proposed and employed to 

define damage evolution equations for each of the constituents. Numerical results for high cycle 

fatigue loading are presented for variations in material and model parameters. 

KEY WORDS: fatigue, damage, damage evolution, micro-mechanical, metal matrix composites 



Introduction 

With the increase in performance of aerospace vehicles design factors such as weight and material 

strength play an increased role in the design philosophies of such structures. Along with such drastic 

performance enhancements appropriate light weight materials need to be developed that are capable 

of performing under such conditions as those occurring during flight while retaining their structural 

integrity. Such candidate materials have been identified among the composite materials, especially 

in the area of metal matrix composites. Special consideration has been given to Titanium Matrix 

Composites (TMC) due to the fact that these materials maintain their excellent strength to density 

ratio even at elevated temperatures. This intrinsic material property has drawn attention from 

the turbine engine manufacturing industry for potential use of such materials in advanced aircraft 

turbine engines. The main reason for this success is attributed to the tremendous reduction in 

weight of the key engine components leading to a possible increase in engine performance and/or a 

reduced fuel consumption. Titanium matrix composites offer higher mechanical properties, better 

dimensional stability, and strength retention at elevated temperatures, such as those occurring in 

turbine engines, as compared to their monolithic counterparts. Nevertheless the use/employment of 

MMC's and TMC's still has major drawbacks. First, the production/manufacturing costs for such 

material are still high due to the special manufacturing processes involved. Second the employment 

of such materials in vital components of an aircraft or space vehicle, such as a turbine engine, 

requires a thorough understanding and control of the material behavior under extreme loading 

conditions such as those occurring during the regular service life of such vehicles. This calls for the 

development of material models which are capable of predicting real life behavior of such materials 

with a deterministic margin of risk. As of today the behavior of such MMC's and TMC's is not yet 

fully understood and appropriate material models still lack reliability and applicability as compared 

to those of their monolithic counterparts. Considerable experimental as well as theoretical research 

effort is put forward to better understand and analytically model metal matrix composites in order 

to provide a more efficient use of the tremendous potential contained in these new materials. In 

particular, the literature lacks a consistent and systematic approach to the analysis of cyclic damage 

(low-cycle / high-cycle fatigue) in high temperature metal matrix composites. It is this area which 

is addressed in this paper, especially the consistent development of a fatigue damage model for 



uni-directional Metal Matrix Composites. 

Cyclic/Fatigue Damage Models in the Literature 

Reviewing the literature on the subject of fatigue in engineering materials reveals that the 

explanation of fatigue phenomena and the prediction of fatigue life have been the focus of im- 

mense research efforts for the last 50 years. The two major analytical approaches used are the 

phenomenological approach and the crack propagation approach. The former is concerned with 

lifetime prediction for complex loading histories using existing lifetime test data, mostly S — N data 

for constant amplitude cyclic loading. The second approach is concerned with predicting the growth 

of a dominant crack due to cyclic load which is not the case for metal matrix composites. 

Almost all of the known fatigue damage models for composite materials are based on the models 

developed for their isotropic counterparts (Owen and Howe 1972, Subramanyan 1976, Srivatsavan 

and Subramanyan 1978, Lemaitre and Plumtree 1979, Fong 1982, Hashin 1985, Hwang and Han 

1986a,b, Whitworth 1990). Lack of theoretical knowledge and sufficient experimental tests on com- 

posite materials led to the application of known fatigue damage models to predict fatigue lifetime 

of such materials, despite the fact that the fatigue behavior of composite materials is quite differ- 

ent from that of isotropic materials, such as metals. With improvement in theoretical knowledge 

on composite materials and experimental equipment, a lot of studies have been conducted involv- 

ing fatigue life and residual strength degradation, modulus degradation and residual life theories. 

However, it was soon recognized from the obtained models that the material structure of such com- 

posites has to be included in the development of fatigue damage models in order to arrive at more 

feasible and reliable models. Up to date there is no universal fatigue damage model based on the 

micro-structure of the composite material capable of predicting fatigue life time for general fatigue 

loading with reasonable reliability. 

Arnold and Kruch (1991a,b) presented a phenomenological, isothermal transversely-isotropic 

differential continuum damage mechanics (CDM) model for fatigue of unidirectional composites. 

This model is based on the CDM fatigue models for isotropic materials developed at ONERA 

(Chaboche and Lesne 1988, Chaboche 1988a,b, 1987, Lesne and Savalle 1987, Lesne and Cailletaud 

1987). They considered the metal matrix composite as a pseudo homogeneous material with locally 

definable characteristics. Such local characteristics have been considered in the form of a directional 



tensor representing the fiber direction. Furthermore the concept of anisotropic failure surfaces 

has been introduced into the model based on deformation theories for high temperature metal 

matrix composites of Robinson et al. (1987) and Robinson and Duffy (1990). Despite the rigorous 

development the proposed model has two major drawbacks: (1) the expensive experimental setup 

and exhaustive experiments needed to obtain the material parameters used in the model equations, 

and (2) the employed scalar measure for the damage variable. Recently Wilt and Arnold (1994) 

presented a fatigue damage algorithm which employs the fatigue damage model developed by Arnold 

and Kruch (1991a,b). They implemented their algorithm into the commercial finite element code 

MARC and used it to analyze a cladded MMC ring. Results were presented on a qualitative basis 

since no experimental results are available. 

Nicholas (1995) recently reviewed fatigue life time prediction models for TMC's which use fun- 

damentally different approaches. His investigation showed that various models are based on a single 

parameter and have limited applicability. Two other models, a dominant damage model (Neu 1993) 

and a life fraction model, show applicability to various loading ranges, frequencies and temperature 

profiles. Neu (1993) pointed out that despite the fact that there exist several damage mechanisms 

it is possible to consider the most dominant ones for modeling and include the influence of others 

in those since their behavior might be similar. His model was able to match experimental data for 

isothermal and thermo-mechanical fatigue for low-cycle fatigue experiments. The life fraction mod- 

els, which are based on the fact that fatigue damage accumulates simultaneously due to independent 

mechanisms, are able to model only specific composite layups for which their parameters have been 

calibrated. Various other fatigue investigations have been performed but their focus is on specific 

ply-stacking sequences of interest at the time of the investigations. In general it is found that even 

though micro-mechanical effects or mechanisms are considered and incorporated into the models 

there does not yet exist a true micro-mechanical fatigue damage model which considers the material 

behavior and damage evolution in the constituents individually. The following proposed micro- 

mechanical fatigue damage model is intended to exactly fill in this gap. It is considered as a first 

step along a consistent route to develop a universal micro-mechanical fatigue damage model capable 

of modeling various loading conditions including thermo-mechanical effects as well as environmental 



effects which occur during the service life of dynamically loaded composite structures. 

Damage Mechanics Applied to Composite Materials 

Kachanov (1958) pioneered the idea of damage in the framework of continuum mechanics. For 

the case of isotropic damage and using the concept of effective stress, the damage variable is defined 

as a scalar in the following manner 

*~nr (1) 

where Ä is the effective (net) resisting area corresponding to the damaged area A. Using the 

hypothesis of elastic energy equivalence (Sidoroff 1980), the effective stress ä can be obtained from 

the above equation by equating the force acting on the hypothetical undamaged area with the force 

acting on the actual damaged area. 

In a general state of deformation and damage, the scalar damage variable if is replaced by a 

fourth-order damage effect tensor M which depends on a second-order damage tensor <f>. In general, 

the effective stress tensor ä is obtained using the following relation 

a = M : a (2) 

where (:) indicates tensor contraction over two indices. The nature of the damage effect tensor M 

is discussed in the literature by Voyiadjis and Kattan (1992, 1993a). 

In general the analysis of composite materials falls into two categories. The first category consists 

of all approaches that employ the continuum concept (Talreja 1987, Christensen 1990), where the 

composite system is treated as one continuum and the equations of anisotropic elasticity are used 

in the analysis. The second category encompasses all approaches that use micro-mechanical models 

together with averaging procedures and homogenization techniques (Poursatip et al. 1982, Dvorak 

and Bahei-El-Din 1982, 1987, Dvorak and Laws 1987, Dvorak et al. 1985) to describe the material 

behavior. In these models, the composite is considered to be composed of a number of individual 

phases for which local equations are formulated. Employing a suitable homogenization procedure 

then allows one to analyze the material behavior of the entire composite system based on the local 

analysis. 



Dvorak and Bahei-El-Din (1982, 1987) employed an averaging technique to analyze the elasto- 

plastic behavior of fiber-reinforced composites. They considered elastic fibers with an elasto-plastic 

matrix. However, no attempt was made to introduce damage in the constitutive equations. Voyiadjis 

and Kattan (1993b), Voyiadjis et al. (1993), Voyiadjis and Kattan (1993c) introduced a consistent 

and systematic damage theory for metal matrix composites utilizing the micro-mechanical composite 

model of Dvorak and Bahei-El-Din (1987). They introduced two approaches, referred to in the 

literature as the overall and the local approach, which allow for a consistent incorporation of the 

damage phenomenon in a composite material system. 

The overall approach (Kattan and Voyiadjis 1993) to damage in composite materials employs 

one single damage tensor to reflect all types of damage mechanisms that the composite under- 

goes like initiation, growth and coalescence of micro-voids and micro-cracks. Voyiadjis and Park 

(1995) improved the overall approach by including and adopting a general damage criteria for or- 

thotropic materials by extending the formulation of Stumvoll and Swoboda (1993) to MMC's. In 

this improved model all damage types are considered but the model lacks the consideration of local 

(constituent) as well as interfacial damage effects. In contrary to the overall approach the local 

approach (Voyiadjis and Kattan 1993d) introduces two independent damage tensors, <f>m and <j>*, 

and hence two independent damage effect tensors, Mm and M*, to reflect appropriate damage 

mechanisms in the matrix and fibers, respectively. It is this latter approach which is employed in 

the proposed micro-mechanical fatigue damage model. 

Micro-Mechanical Fatigue Damage Model 

Stress and Strain Concentration Tensors - In the derivation of the model, the concept of effective 

stress (Rabotnov 1968, Sidoroff 1980) is used. The effective stress is defined as the stress in a 

hypothetical state of deformation that is free of damage and is mechanically equivalent to the 

current state of deformation and damage. In a general state of deformation and damage, the effective 

Cauchy stress tensor ä is related to the current Cauchy stress tensor by the linear relation given as 

in equation (2). In the case of composite materials, similar constituent (local) stress relations hold 



for the matrix and fiber stress tensors am and a*, respectively. 

Öm   =   Mm:erm (3a) 

»f   =   Jlf':^ (3b) 
f 

where Mm and M^ are fourth-order local damage effect tensors for the matrix and fiber materials, 

respectively. The damage effect tensors Mm and M* are dependent on second order damage vari- 

ables <t>m and (f>f, respectively. These latter second order tensors quantify the crack density in the 

matrix and fibers, respectively (Voyiadjis and Venson 1995). The crack density tensors incorporate 

both, cracks in the fiber, matrix, as well as those due to fiber debonding. A complete discussion on 

these tensors is given in the work of Voyiadjis and Venson (1995). 

In the proposed model the matrix is assumed to be elasto-plastic and the fibers are assumed 

to be elastic, continuous and aligned. Consequently, the undamaged (effective) incremental local 

(constituent) constitutive relations are given by: 

däm   =   bm:dem (4a) 

d&f   =   Ef : def (4b) 

The fourth-rank tensors Dm and E are the undamaged (effective) matrix elasto-plastic stiffness 

tensor and fiber elastic stiffness tensor, respectively. The incremental composite constitutive relation 

in the damaged state is expressed as follows 

dtr = D:de (5) 

where de is the incremental composite strain tensor. 

In order to arrive at the local (constituent) relations, given by equations (4), a homogenization 

technique in the form of the Mori-Tanaka averaging scheme (Chen et al. 1992) is employed. Through 

the use of the so-called stress and strain concentration tensors, a relationship between the global 

applied effective composite stress, ä, and the local effective stress in the constituents, &(m'!\ is 



obtained as follows 

am   =   Bm:ä (6a) 

a*   =   B!:ä (6b) 

where Bf and Bm represent the effective stress concentration tensors connecting the local effective 

stresses with the global effective stresses. In the damaged configuration the following relations are 

obtained 

am   =   Bm:tr (7a) 

af   =   Bl-.cr (7b) 

Combining equations (2), (3), (6) and (7) one obtains the relation between the local stress concen- 

tration tensor and the local effective stress concentration tensor as follows 

Bf   =   M-*:Bf:M (8a) 

Bm    _    M-m:Bm:M (8b) 

Similar relations may be obtained for the deformations in the effective (undamaged) configuration 

as follows 

cm   =   Äm:i (9a) 

i'   =   Äf:e (9b) 

where Ä and Äm represent the effective strain concentration tensors connecting the local effective 

strains with the global effective strains. In the damaged configuration the relations are given by 

em   =   Am:e (10a) 

t!   =   Af:e (10b) 



and furthermore 

Af   =   Mf:Af:M~l (11a) 

Am   =   Mm:Am:M-1 (lib) 

Effective Volume Fractions - During the process of damage evolution in the material another 

phenomenon has to be considered. As damage progresses within each constituent the effective load 

resisting area/volume changes while the gross area/volume remains the same. Since the distribution 

of forces/stresses to the constituents depends directly on the area/volume intact to resist an applied 

force/stress there is a change in the allocation of the external applied force/stress to the constituents. 

This redistribution of force/stress due to progressing damage can be accounted for by defining the 

so-called effective volume fractions which are based on the updated damage variable during each 

load/stress increment. Expressions for the effective volume fractions are given as 

cm = —^ T (12) 
(l-#j) + (1_0/9)j& 

and 

/ 
C>  =      -        Teg -BT (13) 

(l-<^) + (l-r9)\ 
*1 - 1 ~ fa 

where c0 and c™ are defined as the volume fractions for the fiber and matrix in the virgin material, 

respectively. The expressions for <p™ and <p{q are given as 

4L   «    "^ (14a) 

UmC 
4>Tg    =     ium   II (14b) 

with 0^.it and <f>™it defined as the critical damage tensors for the fibers and the matrix, respectively, 

and || • ||i2 defined as the Li - norm of the quantity enclosed in the vertical bars. 

Proposed Micro-Mechanical Fatigue Damage Model - The proposed fatigue damage criterion g 



is considered as a function of the applied stress c, the damage parameter <j>, the damage hardening 

parameter K, and a tensor quantity 7, which is explained below. The equation for g is defined by: 

9 = 3^-1 (15) 

where J is defined as 

3" = w-'wj? (Ykl - 7W) (Yu - Tfc) (16) 

The term (Yki-'Tki) represents the translation of the damage surface and therefore accounts for dam- 

age evolution during cyclic loading. The tensor Y represents the thermo-dynamical force conjugate 

to the damage variable <£ and is defined as 

*y = 9 ^°cd ^o6p9 ^pqki °kl + aM ^uvpq Cuvab a cd)    o , (17) 

with djki = E~l
kl, while the quantity 7 can in principle be compared to the backstress in plasticity 

theory hence representing in this case the center of the damage surface in the thermo-dynamical 

conjugate force space Y. Its evolution equation is given as follows 

iij = c<Pij (18) 

similarly to the evolution equation for the backstress in plasticity. The tensor quantity Wij accounts 

for the anisotropic expansion of the damage surface and is given as follows 

Wij = uij + Vij (19) 

where the tensor u is defined as 

«ij = *(t) *?(») ( — )     sij   .     (no sum on i) (20) 

The tensor V^ can be interpreted physically as the damage threshold tensor for the constituent 



material considered, while K represents the effect of damage hardening and is defined as follows 

r<t>2 rt 
K= /     Y: d<f>=       Y: <j>dt (21) 

Jlp! JO 

Damage hardening is based on the increase in the initial damage threshold due to micro-hardening 

occurring at a very local material level (Chow and Lu 1989). The parameter HJ in equation (16) 

adds to this hardening behavior due to the movement of the damage surface in the direction of 

the evolution f damage. The remaining variables n, A,-, r?j, &andc are material parameters to be 

determined for each individual constituent. Especially the form of the variable & will be discussed 

below in the numerical implementation. 

Based on the thermo-dynamical principles a potential function for each constituent is defined 

as (Voyiadjis and Kattan 1993d) 

n = W + nd-hif-h2g (22) 

where IP, IId, / and g represent the dissipation energy due to plasticity, the dissipation energy 

due to damage, the plasticity yield surface for the constituent material considered, and the damage 

surface, respectively. For loading in the elastic regime (high cycle fatigue) the terms involving plastic 

dissipation energy are neglected. The term Ud representing the dissipation energy due to damage 

is given as 

Ild = Yijj>ij + £k (23) 

Applying the theory of calculus of several variables to solve for the coefficients Ai and Ä2 yields 

from which an expression for the damage increment is obtained as follows 

Ufa = dh2 ^ (25) 



Hence dfo may be determined using the consistency condition 

*-&=*+£=«*+£*+£=*-<' (26) 

Substitution of the appropriate terms (equations (18) and (21) into equation (26) yields 

*-£=*+g«*+i""'-'&"*-0 (2?) 

Replacing d<p with equation (25) an expression for dÄ2 is obtained as follows 

dA2 = _       &da« d       a (28) 

Backsubstitution of equation (28) into equation (25) yields an expression for the damage increment 

for the appropriate constituent in terms of a given stress increment as 

dgdgj 

dcpmn = ~~7~d d~g dg \   dg 

or 

dhj^Vijkidaki (3°) 

where 

dg    8q 
 dYij dokl 

»yu--^: "'I3    "   -   x   - (3D 

and 

Vr»    =     2 K* ^ojjfl MP«fc' afc' + aP« ^WÄab CT«*J     fl^" (32) 

(33) 

As stated elsewhere (Stumvoll and Swoboda 1993) a damaging state in a constituent is given if for 



5<0 (non-damaging loading) 

9 = 0 wp-dY"<0 (elastic unloading) 

9 = 0 
fr«««-* 

(neutral unloading) 

9 = 0 W-dY">0 (loading from damaging state) 

any state the damage criterion is satisfied 

5 = 0 (34) 

for that specific constituent. In general four different loading states are possible 

(35) 

(36) 

(37) 

(38) 

Using equation (29) the damage increment per fatigue cycle maybe obtained by integration over 

one stress cycle as 

dd>ij fmax fOmin 
-Tfi-= %ijkldakl + *ijkldaki (39) 

where ipijkt is given according to equation (31). The dependence of damage on the mean stress and 

the amplitude of the stress cycle is implicitly included through the integration of equation (39). 

Return to the Damage Surface 

In the numerical implementation of the model it appears that after calculating the damage 

increment d<j> for the current stress increment da and updating all the appropriate parameters 

depending on the damage variable <f>, the damage surface is in general not satisfied. Therefore it is 

necessary to return the new image point to the damage surface by employing an appropriate return 

criteria. 

At the beginning of the (n + l)$t increment we assume that the damage surface g is satisfied 

S(,1'((TlnU(,,),«(n)7(n))=0 (40) 

Applying the stress increment da (assuming a damage loading) will result in a damage increment 

d<p which will be used to update the values for K and 7. Checking the damage surface (equation 15) 



with the updated values for a, <f>, « and 7 will in general yield 

p(n+D ^(n+U^+i),«(«+»,7(«+i)) > 0 (41) 

where 

ff(n+l) = ff(n) + do.(n+l) 

0(n+l) = ^(n) + d<^(n+l) 

K(n+1) _ K(n) + <fc(n+l) 

7(n+l) _ ^(n) + ^7(n+l) 

(42) 

(43) 

(44) 

(45) 

Using a Taylor series expansion of order one expands the left hand side of equation (41) to yield 

5(n+D ^(n) + rf<7(»+U, ^(«) + ^("+1), «W + <fe(n+1\7(n) + d7(n+1)) 

(n) 

Ö7 

(") 
d7

(n+1) > 0 (46) 

Recalling the relationships in equation (18) and (21) relation (46) is given by 

0<»+D (ffW + do-("+1), </,(") + dtf>(n+1\ «W+ y(n) :^(n+1),7(n) + cd0(n+1)) >0 (47) 

The return to the damage surface, hence p'n+1) = 0, is now achieved by adjusting the damage 

increment dd> using a linear coefficient a such that 

g(n+D fff{n) + d0.(n+D,^(") + ad^n+1\K™ + aF(n): d^n+1),7(n) + acd0(n+1)) = 0 

(48) 

Substitution of the appropriate expressions for the derivatives in equation (48) as well as equa- 

tion (21) and (18) and setting the left hand side equal to zero allows one to solve for the unknown 



coefficient a such that 

a — — A I  (49) 

(&f+fef»'M + .fcp)*«*M> 

Numerical Analysis 

The above model is implemented into a numerical algorithm and used to investigate the fatigue 

damage evolution in the individual constituents of a uni-directionally fiber reinforced metal matrix 

composite. No assumption, except those implicitly included in the stress and strain concentration 

tensors based on the Mori-Tanaka averaging scheme (Chen et al. 1992) are made. The implemen- 

tation is performed using a full 3-D modeling hence avoiding any assumptions to be made upon 

simplification of fourth order tensors to two-dimensional matrix representation. The Mori-Tanaka 

averaging scheme is implemented using the numerical algorithm according to Lagoudas et al. (1991). 

Only an elastic analysis is performed at this time. Since no experimental data is yet available a 

parametric study is conducted in order to demonstrate the influence of various parameters on the 

damage evolution in the constituents. The constituents are assumed to consist of an isotropic mate- 

rial. The material used in the analysis are given in Johnson et al. (1990) and are shown in Table 1. 

The fatigue loading is applied in the form of a sinusoidal uni-axial loading given as 

°a = fry.«..» + "».A sin (2^) (50) 

where 

ffn,mean = 550 MPa       and cijmean = 0       (for ij ± 1) 

ou,A = 450MPa and aijA = 0       (for i,j # 1) 

For the numerical integration scheme an adaptive algorithm was implemented such that the stress 



increments where taken as 

A(Ji. = lii^L       if Ci. < ameen,0.    (non-damage state) 

Aay = IMPa       if ffy < amf.Biy    (damage state) 

during the loading phase to the mean stress and 

Aa.. = sin 

with 

A0 = 
7T 

50 

A0 = 
7T 

9ÖÖ 

* *<M (during cyclic loading) 

(during a non-damaging state) 

(during a damaging state) 

for the cyclic loading phase. Here 6 represents simply the phase angle during the cyclic loading. 

The above limit values were adopted based on a numerical investigation which yielded satisfactory 

behavior of the model using the above values. 

The damage criterion is evaluated within each increment and a return criterion as described in 

equations (48) and (49) is applied if |p(n+1)| ^ 10~3. Except at the very first incident of damage 

this criterion shows satisfactory performance during the application of the return criterion (equa- 

tions (41) - (49)). The numerical noise at the initiation of damage has been investigated and it 

is found that a reduction in the step size for the stress increment reduces the numerical error ap- 

propriately to fall within the specified bounds. This phenomenon is not observed at any other 

time during the analysis (Figure 1). It is attributed to the point of discontinuity in the damage 

criterion at the wake of damage. The flexibility of the model is demonstrated through a parametric 

study based on variations in the parameters A and f. For the parametric study the values of all the 

parameters except for one are kept constant in order to study the effect of a single parameter on 

the model as shown in Table 2. The parameters £r and C account for the variation in the damage 

evolution with respect to the number of cycles, especially the increase in the damage rate during 

the fatigue life of a material. The specific form of the parameters £ and £m is obtained from exper- 

imental curves, such as those shown in Figures 4 and 5, where the fatigue damage in the material 



is plotted versus the number of applied cycles. Since fatigue damage evolution for a specific stress 

ratio R is dependent on the applied mean stress as well as the stress amplitude, such experimental 

curves have to be obtained for different applied mean stresses and stress amplitudes. The damage 

4> in the material during the fatigue life maybe obtained by using the stiffness degradation or an 

equivalent method, such as sectioning and subsequent SEM evaluation of the specimens for damage 

quantification. Upon inspection of the obtained experimental curves it is observed that basically 

three different regions can be distinguished during the fatigue life of the material (Figures 4 and 5). 

These different regions pertain to the damage initiation phase (Phase I), the damage propagation 

phase (Phase II), and the failure phase (Phase III). A distinction for these regions maybe made by 

specifying bounds in the form of the number of cycles such as N\ and N2, as indicated in Figure 4. 

This is done in general by visual inspection using engineering judgment and physical intuition. Us- 

ing these curves an evolution equation for £ with respect to the number of cycles N, the applied 

mean stress amean and the stress ratio R maybe established. For the current analysis, since no such 

experimental data are available, the following forms for the parameters £ and £m in terms of N\ 

and N2 have been used and are given as 

^^^^('"K^K       a^^r) (si) 
CN = £ + Atf + (j^rj^) *S (K <N<N?) (52) 

^ = C+A£r+(^r^r)2A£2
m (N > N?) (53) 

^
=

*°
/+
(F^W (KN<Nl) (54) 

Ä-fo+hSr1^)   A£2
y [N>Ni) (55) N£ -1 

where 

b   =£0 +Aft + [Nn,_^J A£2 (57) 

The results for the parametric study in order to investigate the influence of the model parameter 



ft on the damage evolution in the matrix are shown in Figure 3 with all other parameters kept 

constant. Varying the value of the parameter A and keeping ft constant will result in the curves 

shown in Figure 2. Only the damage variable <f>n is shown since the other components of 4> are 

equal to zero or their value is smaller by a magnitude of 100. The reference frames of the damage 

tensor and the material system are identical, hence "1" representing the fiber direction while "2" and 

"3" indicate the transverse directions. For clarification it should be emphasized that the plateaus 

exhibited in Figures 2 and 3 represent the unloading phase in the cyclic loading where no further 

damage occurs. 

Two sample analyses of complete fatigue simulations have been conducted to show the capabili- 

ties of the developed model. The result of such an analysis for the damage evolution in the matrix, 

in the fiber and the overall composite is shown in Figure 6. Failure of the entire composite occurs 

due to fiber failure at about 116000 cycles for the case of an,mai = 1000 MPa and a stress ratio 

R = 0.1. In a second complete fatigue simulation failure occurs at about 217000 fatigue cycles 

for <Tn,max = 940 MPa and a stress ratio R = 0.1. The obtained fatigue life in the two cases is 

compared with experimental results for a uni-directional composite (Johnson 1989) as shown in 

Figure 7. The results show satisfactory agreement which establishes the potential of the proposed 

model. 

Conclusions 

A micro-mechanical damage model for fatigue loading based on thermo-dynamical principles is 

proposed. The model is applied to uni-directionally reinforced MMC's. Only elastic loading in the 

form of a uni-axial fatigue loading (in the fiber direction) is considered hence reflecting high cycle 

fatigue loading. Numerical results from the parametric study show the influence of various model 

parameters on the damage evolution in the constituents. A sample analysis for a complete fatigue 

simulation with final failure is shown. 
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Table 1: Material properties used in the analysis 

E (GPa) V ou (MPa) av (MPa) c (in %) 
Matrix (Ti - 15 - 3) 92.4 0.35 933.6 689.5 67.5 
Fiber (SCS - 6) 400.0 0.25 N/A N/A 32.5 

Table 2: Model parameters used in the analysis 

V (MPa) A (MPa) V * c(MPa) n Figure 
Matrix (Ti - 15 - 3) 0.1 80000 1.0 refer to Eqs. (51) - (57) 1.0 1.0 6 
Fiber (SCS - 6) 3 160000 1.0 refer to Eqs. (51) - (57) 1.0 1.0 6 

Ni N2 £o £i 6 Figure 
Matrix (Ti - 15 - 3) 10 110000 0.55 0.02 0.03 6 
Fiber (SCS - 6) N/A 110000 0.56 N/A 0.03 6 



Fig. 1: Validation of employed return criteria 

Fig. 2: Variation in damage evolution for various values of A 

Fig. 3: Variation in damage evolution for various values of £o 

Fig. 4: ^> — iV diagrams for determination of £ for constant R 

Fig. 5: <f> — N diagrams for determination of £ for constant amean 

Fig. 6: Fatigue damage evolution during a complete simulation 

Fig. 7: Comparison with experimental results (Johnson 1989) 
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Abstr.ct-A micromechanical damage composite model is used here such that separate local evolution 
damage relations are used for each of the matrix and fiber. In addition, this is coupled with mterfacial 
damage between the matrix and fiber exclusively. An overall response is linked to these damage re- 
lations through a certain homogenization procedure. A finite element analysis is used for quantifying 
each type of damage and predicting the failure loads of dog-bone shaped specimen and center-cracked 
laminate metal matrix composite plates. The development of damage zones and the stress-strain re- 
sponse are shown for two types of laminated layups, a (0/90)$ layup and a (±45)s Uyup. © 1997 fclse- 
vier Science Ltd. All rights reserved. 

INTRODUCTION 

DAMAGE and plastic deformation is incorporated in the proposed model that is used for the 
analysis of fiber-reinforced metal matrix composite materials. The proposed micromechanical 
damage composite model used here is such that separate local constitutive damage relations are 
used for each of the matrix and fiber. This is coupled with the interfacial damage between the 
matrix and fiber exclusively. The damage relations are linked to the overall response through a 
certain homogenization procedure. Three fourth-order, damage tensors Af°, AT and M° are 
used here for the two constituents (matrix and fibers) of the composite system. The matrix 
damage effect tensor AT is assumed to reflect all types of damage that the matrix material 
undergoes such as nucleation and coalescence of voids and microcracks. The fiber damage effect 
tensor M* is considered to reflect all types of fiber damage such as fracture of fibers. An ad- 
ditional tensor Af" is incorporated in the overall formulation that represents interfacial damage 
between the matrix and fiber. An overall damage effect tensor, M, is introduced, that accounts 
for all these separate damage tensors AT, M* and M*. 

THEORETICAL PRELIMINARIES 

The metal matrix composite used in this work consists of an elasto-plastic ductile metal 
matrix reinforced by elastic aligned continuous fibers. The composite system is restricted to 
small deformations with infinitesimal strains. In the initial configuration, COJ the composite ma- 
terial is assumed to be undeformed and undamaged. The initial matrix and fiber subconfigura- 
tions are denoted by C? and Ci respectively. Due to applied loads, the composite material is 
assumed to undergo elasto-plastic deformation and damage, and the resulting overall configur- 
ation is denoted by C. The resulting matrix and fiber local subconfigurations are denoted by C" 
and d, respectively. Damage is quantified using the concept proposed by Kachanov[l] whereby 
two kinds of fictitious configurations C and C of the composite system are considered. C con- 
figuration is obtained from C by removing all the damages, while C configuration is obtained 
from C by removing only thejnterfacial damage between the matrix and fiber. C is termed full 
effective configuration, while C the partial effective configuration. 

A coupling formulation of plastic flow and damage propagation seems to be impossible, 
due to the presence of the two different dissipative mechanisms that influence each other. For 
example, the position of slip planes affects the orientation of nucleated microcracks. One can, 
however, assume that the energy dissipated in the yielding and damaging processes is indepen- 
dent of each other and apply a phenomenological model of interaction. Use will be made of the 
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concept of effective stress [2]. Assuming a fictitious undamaged system, the dissipation energy 
due to plastic flow in this undamaged system is assumed to be equal to the dissipation energy 
due to plastic flow in the real damaged system. wher 

The basic feature of the approach presented here is that local effects of damages are con- j of th 
sidered whereby these effects are described separately by the matrix, fiber and interfacial # 
damage. It is clear the local nature of damage of this approach whereby the different damages 
are separately isolated. This approach can be summarized in the following three steps^ First, 
apply the local damage effect tensors A/™ and M* to the local effective configurations C° and 
C\ respectively. This is followed by applying the damage stress concentration factors fi™ and E 
to the local partial effective configurations C™ and Ö in order to obtain the overall partial effec- ; *&« 
tive configuration C. Finally, one applies the interfacial damage effect tensor Af* to the overall ^uni| 
partial effective configuration C to obtain the overall damaged configuration C. ^ C 

In the formulation of this work, quantities based on the full effective configuration, C, and 
the partial effective configuration, C, are denoted by a superposed bar and superposed tilde, re- 
spectively. Fiber and matrix related quantities are denoted by a superscript m or f, appropri- wher 
ately. In addition, interfacial damage related quantities are denoted by a superscript d. 

In the undamaged effective configuration C, the overall effective stress increment da can be 9 
expressed in terms of the phase effective stress increments do"1 and da1 as follows: > fi jj 

dä„«?»d5J, + crdöJ (1) 

where P and ? are the matrix and fiber volume fractions, respectively. The local-overall re- 
lations for the stress increments for the matrix and fibers in the fictitious local and overall con- 
figurations are given as follows: ( fun# 

d<5£ = ffyu da*/,    where r = m, f, (2) 

where W is the stress concentration tensor for the matrix or fibers. Similarly, the overall effective . 
strain increment is assumed in the effective configurations such that . ° ]' 

back 
d?(,- = Pd«» + crd^. (3) in« 

i 
where df™ and df are the effective matrix and fiber strain increments, respectively. The additive 
decomposition is assumed of the matrix and overall strain increments in C™ and C, respectively, 
such that 

d«0 = dV + d«/ (4) 
whei 

d«£«d^' + d«£", (5) p] is 

where ' indicates the elastic and " indicates the plastic part of the increment. Equations (4) and 
(5) are justified in view of the assumption of small strains. The fibers are assumed to deform 
elasticaUy and therefore we have 

CONSTITUTIVE EQUATIONS FOR THE UNDAMAGED METAL MATRIX COMPOSITE 

The constitutive relations for the matrix and fibers are given by the following relations: 

daf = D*kldt?l (8) 

whei 

d4 = d4'. (6) 

The local-overall relations for the effective strain increments are given as follows: 

dfy = Ä^u,    where r = m, f, (7) 
j 

where Är is the strain concentration tensor for the matrix or fibers. ' anci 

The expressions for the stress and strain tensors based on the Mori-Tanaka method are 
given in Appendix A. ■ 

and 

i 
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(9) d4=4*'d*«' 
where LP is the elasto-plastic stiffness tensor of the matrix and & is the elastic stiffness tensor 
of the fiber. The elastic stiffnesses of the matrix and fiber are given by the following expressions 

££, = XaSvSk, + G^M;/ + SuSjk) 

gyu = FSijSu + &(iikhji + SaSjk), 

(10) 

(11) 

where Jtm, Gn, Xf and & are Lame's constants for the matrix and fibers, respectively. 
Substituting for do" and dö^ from eqs (8) and (9), respectively, into eq. (1) and making use of 
eq. (7), one obtains the relation 

day = Dypg d€„, (12) 

where 

D is the elasto-plastic stiffness of the composite in the effective undamaged configuration. 

PLASTIC BEHAVIOR OF THE UNDAMAGED METAL MATRIX COMPOSITE 

The elasto-plastic constitutive model for the matrix is based on the von Mises type yield 
function/"(ö^, ä?) in the local configuration C™ such that 

r4^äj^-^)-<!=o. (14) 

of is a material constant denoting the uniaxial yield stress of the matrix material and a™ is the 
backstress tensor. The plastic flow in the configuration C™ is given by the associated flow rule 
in the form 

(15) 

where A   is a scalar function introduced as a Lagrangian multiplier in the constrain thermodyn- 
amic equations for the matrix material. 

In order to describe kinematic hardening for the matrix, the Prager-Ziegler evolution law 
[3] is used here in the configuration C™, as follows: 

dö» = Mffi(5?-fip, 

where £n is a scalar function given in terms of Än as follows: 

8/°» 3/° 

(16) 

(17) 

and b is a material parameter. 
The parameter Äm is obtained from the consistency 

4^(5», «■) = 0 

and is given by the following relation: 

1 8/m™ Am =    J     irni an 

(18) 

(19) 
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where 9 
resent gym Sym 

The resulting elasto-plastic stiffness tensor for the matrix material in the effective undamaged 
configuration is given by ^ 

_LV]1 ft,   fm  5T 
^w = ^Jjw ~ ^ Ä^" Sa^Si T== • <2*) 

IM]" = [MQf, - <j>v)],    r « m, f, d, (28) 

where Sy is the Kronecker delta. 

Thef 
cedur 
by Vc 

Damage effect tensors 

_The effective stress concept [1,4] is used in this work. Considering the overall configurations 
C, C and C, one can introduce an overall damage effect tensor M and a partial damage effect * 
tensor M for the whole composite system. These tensors are defined similarly to the definitions 
of A/™, Nf and M* such that 

ay = A/y*/(7i/ (22) 

ffy = Mijkiäu. (23) • 

The tensor A/ reflects all types of damage that the composite undergoes including the damage 
due to the interaction between the matrix and fibers while the tensor A? reflects damage of 
matrix and fibers, excluding the interfacial damage. A matrix representation was explicitly de- 
rived for this fourth order tensor by expressing the stresses in vector form. The tensor M was 
shown to be symmetric. The symmetry property of the tensor M is used extensively in the deri- f 
vation that follows. The same holds true for the tensors A/™, bf and A/"5. Similar to tensor M*, 
both tensors A/™ and M* could be represented in terms of second order tensors 4>m and #r, re- and V 
spectively. The effective matrix stress and the corresponding fiber stress are defined as follows: 

Sf^MfrSS (24) 

and .i totm 
äy = M yW5ju, (25) jr)amc 

where ö™ and.ö' are the partial effective stresses in the C™ and C1 configurations, respectively. ."1 
These stresses are termed partial effective since the interfacial damage has not yet been incorpor- comp 
ated into the. formulation. The overall damage effect tensor, A/, can be related to the partial The d 
damage effect tensor, A?, and the local damage effect tensors such as • 

MyumM^Mf^,, (26) 

where 

M^^FM^B^ + fM^B^. (27) 'I 
This expression defines the cumulative damage of the composite as a function of the local 
matrix and fiber damages A/™ and A/^ respectively, as well as the interfacial damage ^[5,6]. 

The expression of the fourth order local damage effect tensor A/", A/ and A?1 can be rep- 
resented by a 6 x 6 matrix as a function of (&v — tfj) in the form 
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In conjunction with the matrix form of M given by eq. (28), the local stress tensor erf is rep- 
resented by a vector given by 

M- Ki. ok. 03V "12. o». *3i)T-    r = m- f- <29> 

The symmetrized & and a used here are given by [4] 

and 

^ = 5 [*»(*</ - 4>rkj r + (&u - tirjjl   "b"e rmm,f 

äij=\[oik{hkj - <>-'+(«Ä - *jr'*„]. 

(30) 

(31) 

The stresses given by eqs (30) and (31) are frame-independent. Using the symmetrization pro- 
cedure outlined by eqs (30) and (31), the corresponding 6x6 matrix form of tensor M is given 
by Voyiadjis and Kattan[7] as follows: 

Mr = 2V 

2o>220>33 — 2023                     0 0 
0 2o) 1) 0)33 -2013 0 
0                                     0 2o)l)0)22-20J2 

013023 + 012W33 013023 + 012^33 P. 
0 012013+023^)11 012013 + 0230)11 

.012023 + 0130)22 0 012023 + 013O>22 

2013023 + 20120)33 
20)3023 + 20120)33 

0 
0)220)33 + 0) 1)0)33 - 023 - 0i3 

012023 + 013O>22 
012013 + 0230)11 

and V is given by 

0 
2012013 + 20230)11 
2012013 + 20230)11 

012023+013O>22 
0)1)0)33 + 0)1)0)22 - 013 - 012 

013023 + 012^33 

2012023 + 20130)22 
0 

2012023 +20130)22 
012013+0230)11 
013023 + 012^33 

0)22^33 + 0)110)22 ~ 023 - 012 . 

r = m, f, d (32) 

33 - 023^11 - #13^22 - 0)2^33 - 2012023013-                                  (33) 

Wy is used to denote Sv- 4>u- 4>ij used in eqs (32) and (33) represents 0™, 4>rv or 0$ with respect 
to matrix damage, fiber damage or interfacial damage, accordingly. 

Damage stress and strain concentration tensors 
The matrix and fiber stress concentration factors are defined as fourth-rank tensors. As 

composites undergo damage the stress and strain concentration factors do not remain constant. 
The damage stress and strain concentration tensors are given by the following relations [6]: 

*Jw = M -^„„liirski,    r m m, f (34) 

Ä'w^M^A'^firiku    r = m, f. (35) 

AN1S0TR0PIC DAMAGE ANALYSIS 

The damage mechanism for each of the constituents of the composite material is different 
from the other. The matrix undergoes ductile damage while the fiber undergoes brittle damage. 
The mechanism of interfacial damage is dependent on the fiber direction. It is clear that one 
single damage micro-mechanism cannot be considered for the three types of damages outlined 
above. We therefore consider each damage evolution separately. 
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Damage criterion 
An anisotropic damage criterion is proposed in this work. In order to obtain a damage cri- 

terion for nonproportional loading, the anisotropy of damage increase (hardening) must be con- 
sidered. This is accomplished by expressing the damage criterion in terms of a tensonal 
hardening parameter, h. The damage criterion used here is of the form suggested by Mroz[8] 
such that 

^E^y.ÄJsO,    r = m, f, d, (36) 

where T is a generalized thermodynamic force conjugate to the damage tensor <t>r for each of 
the damages associated with the matrix, fiber and debonding. Equation (36) is an isotropic func- 
tion of tensors Y and W such that 

1mfmY\Y'u-\=*, (37) 

where 

*,«*r*« (38) 

and fm is equivalent to Hill's tensor for yield surfaces. The hardening tensor h' is given by 

^ = («i)l/2^K)l/2 + Kr (39) 

Tensors i/ and V are here defined for orthotropic materials as follows: 

«/ = 

M0 
Ms)* 

Ms)'. 

(40) 

and 

V' = 
r*tf 0 0 

0 ktf 0 ,    where r = m, f, d 

0 0 *5tf- 

(41) 

These tensors i/ and V are generalizations to orthotropic materials of the scalar forms for iso- 
tropic materials originally proposed by Stumvoll and Swoboda[9]. In expressions (40) and (41), 
the scalar quantities k\, kr

2, XJ, v?. /2, v5, «, & ft. »Ii. »»2 and if'3 are material parameters 
obtained by matching the theory with experimental results. The parameters A/1, A/2, A/3, v,, v2 

and v5 are explicitly related to the physical properties of the material [6]. 
In eq. (41), v^, v^ and vS define the initial threshold against damage for the orthotropic ma- 

terial. It is obtained from the constraint that the onset of damage corresponds to the stress level 
at which the virgin material starts exhibiting nonlinearity. 

Referring to eq. (40), *! is a scalar hardening parameter given by 

■«]/,-<!*,. where r = m, f, d. (42) 

As outlined by Stumvoll and Swoboda [9], the damaging state is any state that satisfies g ■ 0. 
Four states are outlined here 
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de* 
€ - °' TvT dy u<0   (elastic-unloading) 

01   u 

(43) 

(44) 

In th 
condi 
secoE 
mate; 
aniso 

Dame 

* 
mech 
energ 
pov# 

when 
dissij 

Inth 
into i 

The^ 

when 
tious 
full# 

tion e 

and I 

This i 
dissip 
effect 

whicr 

Maki 



Local and interfacial damage analysis of metal matrix composites 489 

image erl- 
öst be con- 
a tensorial 
0 Mroz[8J 

(36) 

or each of 
ropic func- 

(37) 

(38) 

%i by 

(39) 

(40) 

(41) 

ms for iso- 
) and (41), 
parameters 
■ i\ vj, v\ 

tropic ma- 
stress level 

»        (42) 

fies g « 0. 

(43) 

(44) 

gr = o, -^-dr: = 0 (neutral loading) 

^ = 0, 
BY'„ 

dYr
v>0 (loading from a damaging state). 

(45) 

(46) 

In this section, the anisotropic damage criterion g is defined by eq. (37) as well as the loading 
conditions outlined by eqs (43H46). The anisotropic damage criterion is defined through the 
second order tensors if and V, and the damage tensor 4>r for each constituent of the composite 
material. In this work, we assume that the matrix and the fiber are isotropic materials while the 
anisotropic damage criterion is used to describe the interfacial damage. 

Damage evolution of the matrix 

The metal matrix exhibits two energy dissipative behaviors. Although the two dissipative 
mechanisms of plasticity and damage influence each other, in this work, it is assumed that the 
energy dissipated due to plasticity and that due to damage are independent of each other. The 
power of dissipation for the matrix is given by 

n" = nBd + nmp, 
where nmp is the plastic dissipation and fl md 

dissipation is given by 

(47) 

the corresponding damage dissipation. The plastic 

fimp = ö?dff (48) 

In this work, a small strain theory is assumed and the strain rate is assumed to be decomposed 
into an elastic component ?*' and a plastic component ?"", such that 

dl- = dl- + dl- 

The associated damage dissipation is given by 
- md 
nm -y?d« 

(49) 

(50) 

where Y™ is a generalized thermodynamic force conjugate to the damage tensor <f>m. The ficti- 
tious undamaged material ischaracterized by the effective stress and effective strain. Since in the 
full effective configuration, C™, the matrix has deformed with no additional damage, the dissipa- 
tion energy in C° is only composed of the plastic dissipation 

and therefore 

fim = fla? 
(51) 

(52) 

This is because plastic yielding is assumed to be independent of the damage process. The plastic 
dissipation in the damaged matrix is equal to the corresponding plastic dissipation in the full 
effective configuration, C™. This concludes that 

imp 

which implies that 

Making use of eq. (54) together with 

nmp = fT 

5?6e? «5»d€y 

one obtains a transformation equation for the plastic strain rates such that 

(53) 

(54) 

(55) 
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d«f «JfJffcKS (56) 

Making use of the calculus of functions of several variables, one introduces two Lagrange 
multipliers Af and A? in order to form the function CT such that 

£2» = fim - A?/" - Aff1. (57> 

In eq (57), /V. 5°) is the plastic yield function of the matrix and a» is the backstress tensor, 
g» is the damage potential which is a function of TT. To extremize the function ff», one uses 
the necessary conditions 

and 

8 ST 
85? 

= 0 

= 0, 

(58) 

(59) 

which give the corresponding plastic strain rate and damage rate evolution equations, respect- 

ively: 

and 

W5 = A? 
ag" 

(60) 

(61) 

Equation (61) gives the increment of damage from the damage potential g™. Using the consist- 
ency condition for the matrix damage g™ 

dgffi = 0 (62) 

one obtains the parameter A?. Equation (62) states that after an increment of damage, the 
volume element again must be in a damaging state. From eq. (62), one obtains 

8Yf      ij 

8^317 

Substituting eq. (63) into eq. (61), one obtains 

where \\im is a fourth order tensor defined as 

8g° 8g" 
dYJdYl 

The generalized thermodynamic force Y° is assumed to be a function ofthe elastic component 
of the strain tensor p' and the damage tensor <f>m, or the stress 5» and 4>m 

(63) 

(64) 

(65) 

y» = ¥*<$',4%) or ry = Ym(df,<pp. 

The evolution equation for Y™ may be expressed as follows: 

(66) 
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(67) 

Substituting for dy™ from eq. (67) into eq. (64), one obtains the evolution equation for 4>a such 
that 

*% 

or 

where 

*«-(*iWS|) 

«WE = *&,**£. 

1 8Ym 

(68) 

(69) 

(70) 

The thermodynamic force associated with damage is obtained using the enthalpy of the 
damaged matrix where 

Va(5f,4>p = ^5?Et$(4>*)ö?i (71) 

In eq. (71), £° is the damaged elastic stiffness of the matrix. The thermodynamic force of the 
matrix is given by 

(72) 

Using the energy equivalence principle [10], one obtains a relation between the damaged 
elastic compliance, E~m, for the matrix and its corresponding undamaged elastic compliance £™ 
such that [11] 

E$(4P) = M%J<pa)E-»M?M(<p™) (73) 

Making use of eqs (71) and (72), the thermodynamic force for the matrix is obtained explicitly 
such that 

WS«* yn> _    /ZR> r—B w n>   sm   •  zza \t in   r—w an \ aft (74) 

Damage evolution of the fiber 
The gradual degradation of the elastic stiffness of the fiber is caused only through damage 

and therefore no plastic dissipation occurs. We therefore have 

ftr-ft"-yjd*{ 

and 

Accordingly, the function flr is given by 

n'=o. 

Äf nf = n'-AV 

(75) 

(76) 

(77) 

and 
EFM J6/4—■ 
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.-A'üL d<*f. = Af  (78) 

Using the consistency condition for the damage of the fiber 

d/ = 0 (79) 

one obtains the evolution equation for <f>{ 

d4**ikÄ. (80) 
where X* is a fourth order tensor similar to X™ expressed by eq. (69). Y is obtained in a similar 
approach to that of the matrix, r°, and has a similar form, except replacing the superscript m 
withf. 

Interfacial damage evolution 

The interfacial damage can be defined in terms of a second order symmetric tensor #d such 
as[6] 

<t>l = As,s). (81) 

More elaborate interfacial damage expressions could be derived based on the work of Levy[12]. 
The corresponding power of dissipation due to interfacial damage is given by 

and 

The function fid is expressed as 

nd = rjd^. 

nd = o. 

nd = nd - A Y 
and 

,d_,d V 
dYf 

<^ = Ad^. 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

Using the consistency condition for the interfacial damage 

d*d = 0 

one obtains the evolution expression for <pa such that 

Similar to the procedure outlined for the other two types of damages Y* could be easily 
obtained accordingly, such as 

^•^WX^ + ^L^)^. (88) 

CONSTITUTIVE MODEL FOR THE DAMAGED MATERIAL 

Derivation of the elasto-plastic constitutive model for the damaged composite system is per- 
formed in three steps. The first step involves the derivation of separate constitutive equations 
for the matrix and fiber in their respective damaged configurations C* and &. This is followed 
by the second step which combines the two constitutive equations into one for the overall com- 
posite system in its partial effective configuration C. Finally, the interfacial damage is incorpor- 
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(78) 

(79) 

(80) 

l a similar 
^script m 

ir 4>ä such 

•       (81) 

Levy[12]. 

(82) 

ated is order to obtain the final constitutive equation that includes all three types of damage in 
the damaged configuration C. 

The local damaged elastic stiffness tensors £" and E1 in the subconfigurations C" and 
&, respectively, are obtained using the hypothesis of complemental energy equivalence such 
that 

and 

ijkl - M imij£'mnp<iM pqkl 

Eykl - M "imijEmnpqM *"• 

(89) 

(90) 

In order to obtain the damaged elasto-plastic stiffness of the matrix constituent, one 
needs to transform eq. (8) from the undamaged matrix configuration C™ to the 
damaged matrix configuration C™. This is performed through the material time differen- 
tiation of eq. (24) together with strain rate counterpart obtained from eqs (49) and 
(56), such that 

di= = d3/r»i»;+A/--d?s. (91) 

The time rate of the matrix damage tensor used in the material time differentiation of 
eq. (24) and its inverse used in eq. (91) may be expressed as shown below by making 
use of eq. (69) 

5 1/ IE 
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ijkl 9*£ PI 
pqrs """«• (93) 

Making use of eqs (24) and (91)—(93), one obtains the resulting elasto-plastic stiffness re- 
lation for the damage matrix constituent 

where 

nm — 

Dyk! — OrtJ&jiqrsM 7jkl< 

a w m a \g —in 
ijkl v f     £&  _i_ i/f ™ A™ impq v ■>    f—"> £B> A pqmrPmn *+" M ijkl ~ Lrymn   g^-m   A rAl^pqab^d)- 

(94) 

(95) 
P9 

The overall response of the composite system in the partial effective configuration, C, is 
given by 

day = Diju dUki. 

The resulting equation for D is given by [6] 

Dyk, = frtf^fa, + Pff^A^. 

(96) 

(97) 

The  overall  damage  response  of the  composite  system  is  obtained  from  eq.  (96)  by 
applying the interfarial damage effect tensor M*. Using the following relations 

and 

day = dM 'fjuou + M$U dau 

dfy^dMrff'u + M^dou, 

(98) 

(99) 

we obtain the damage elasto-plastic constitutive relation including both the local 
damages, 4>T and <f>m, as well as the interfarial damage d>d. Similarly, the rates of the 
debonding damage effect tensor used in eq.  (98) and its inverse used in eq.  (99) are 

mmmsmm 
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given as follows by making use of eq. (87) 

A BMtkl       A 
ykl B4U pqri 

and 

dM- = ^fA'^dff- «u 

(100) 

001) 
*>? 

Finally, one obtains the damage elasto-plastic constitutive relation including both the 
local damages, tf and <f>m, as well as the interfacial damage <f>d. Making use of 
eqs (96)-O01) one obtains 

day = Dyki de*/, 

where the damage elasto-plastic stiffness of the material is given by 

and 

Mf?«    , ,       -     8M7* ; impq yd    f--1   _ -. 
Sijrm     TTTÄ      -A Tsklc- pqabv«'> 

The elastic stiffness for the damage composite £ is given such that 

Eijkl = M „nijEmnpqM ^y, 

where the elastic stiffness in the partial effective configuration C is given as follows 

EiikI = t  E^B„ABa),i + cEiiBaABC -ijpqApqkl m />?*'• 

(102) 

(103) 

(104) 

(105) 

(106) 
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is 
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COORDINATE TRANSFORMATION 

The three-dimensional damage elasto-plastic constitutive equation for single lamina refer- 
ring to the principal material coordinate system has been introduced in eq. (102). The general 
three-dimensional constitutive relation of a composite lamina referring to the off-axis coordinate 
system denoted by prime '"" can be obtained from eq. (102) by coordinate transformation. 
Here, the x-y plane coincides with the x\-xi plane, and the angle between the x^ and x axis is 
6. The stress and strain vectors in those two coordinate systems are related by 

{da} = mid*}' 

{df} = rr]{d6}', 

where [T] is a transformation matrix given by 

rn= 

Substituting eq. (107) into eq. (102), we obtain the relation 

{daj'-m-'Pirnid«}'. 
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Thus, the damage elasto-plastic stiffness matrix referring to the off-axis coordinate x-y-z system 
is 

[Dj^rrr'Pirn- oioj 
The constitutive equation for the plane stress problem is obtained from imposing the plane 
stress conditions c„ ■ oa ■ ayI 

m 0 to eq. (109). The explicit expression of constitutive 
equation for plane stress is as follows: 

da* 
dOyy   \ = 
da. <zy 

.* i »V* »N* »N* Du 2)12 Dl3 

Tl* TX* »V* 2>21 Dn i)^ 
»x* »v* »»* LZ)31 2)32 2)33J 

d«, 
de 

2d« 
■yy 

■*y 

(111) 

where 

2)*, = 2),,'- A3 'X i)317^33' 

2>*2 «D«'- 2)13' X2>32'/D33' 

D* =Z)2I'-D23'xD3I72>33' 

Z)*3 = Z)14'-A3'XZ)367Z)33' 

2)J=D4i'-Z)43'xDj, '/-D33' 

^ = 2>22'-A3'xD32 72)33' 

2>*3 = D2t'- A3 'XD34 72>33' 

2)32 = 2)42'- 2)43 'x2)32 72)33' 

2)33 = 2)44'-2)43'x 2)3472)53'. (112) 

GROSS DAMAGE ELASTO-PLASTIC STIFFNESS 

The elasto-plastic damage stiffness tensor for a single lamina in its principal material coor- 
dinate system has been presented in eq. (103). This stiffness tensor is transformed to the loading 
coordinate system and expressed as [D]k in matrix form. A symmetric stacking of plies is con- 
sidered here such that t is the thickness of the laminate consisting of n plies and /* is the thick- 
ness of the kth lamina. The average stress increment is expressed as follows (in vector form): 

ld»U«[jl>V*]{d€}. (113) 

Making use of eq. (113), one can define the gross damage elasto-plastic stiffness for the lami- 
nated composite as follows in matrix form: 

pj-fjDoV]. (114) 
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Making use of the assumption of constant strain through the laminate thickness, the stresses in 
each lamina are calculated as follows: 

{d<r}* = [D\{de}. (115) 

FINITE ELEMENT FORMULATION 

The governing equation of the finite element method can be derived from the principle of 
virtual work such as 

f Oy8€ijdV= f flftudP+f tiSutdA, (116) 

where 6ut is a field of virtual displacements that is compatible with applied forces and Siy is the 
corresponding field of compatible virtual strains given by 

and q{ and r, are body forces and surface tractions, respectively. For a small deformation analy- 
sis, we have 

Ui = NijUj (118) 
i 

Sui = Nij(SUj), (119) 
1 

where Uj is the displacement of nodal points and Ny is the displacement interpolation function 
or the shape function. t 

Substituting eqs (117) and (119) into eq. (116), one obtains the equilibrium equations as fol- 
lows: ' H 
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One finally obtains the incremental equilibrium equations by differentiating both sides of 
eq. (120) 

[KHdCn = {d?}, (121) 

where {dU} is the unknown incremental displacement vector of the nodal points and {dP} is the 
corresponding incremental nodal forces given by 

dPa = |   äqiNm dV + IdttNu, dA, (122) 

where dqt is the incremental body force and dr, is the incremental surface traction. In eq. (121), 
[K] is the stiffness matrix which is given by 
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» 
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^-m<^ (123) 

The incremental equilibrium eq. (121) expresses the equilibrium between the internal forces {dp) 
(on the left-hand-side) and the external force {dP) (on the right-hand-side). The residual force 
vector {dR} is defined by 

[dR) = {dP}-{dF]. (124) 

In a damage elastic-plastic analysis, because of the nonlinear relationship between the stress 
and strain, the equilibrium eq. (121) is a nonlinear equation of strains, and therefore, is a non- 
linear function of the nodal displacement. Iterative methods are usually employed to solve 
eq. (121) for displacements corresponding to a given set of external loads. Moreover, since a 
damage elasto-plastic constitutive relation depends on deformation history, an incremental 
analysis following an actual variation of external forces is used to trace the variation of displace- 
ment, strain, stress and damage along with the external forces. 

In an incremental analysis, the total load {/>} acting on a structure is added in increments 
step by step. At the (n + l)th step, the load can be expressed as 

'{/^"{m^Mdn (125) 

where the left superscript n indicates the nth incremental step. Assuming that the solution at the 
nth step, n{u), "{a}, n{e) and "{<*>} is known, and at the (n + l)th step, one obtains the follow- 
ing, corresponding to the load increment {dP}, 

«+i 

«+] 

{«} =" {u) + [du) 

{a) «" [a] + {da) 

"H<t>Y =" {<PY + {d<t>l    r = m, f, d. 

(126) 

(127) 

(128) 

(129) 
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SOLUTION 

A full Newton-Raphson method is used in this work to solve the system of nonlinear 
equations that arise from the equilibrium equations. A brief description of the method is given by 
Voyiadjis [13]. The incremental analysis technique described in this chapter is successfully im- 
plemented into the finite element program NDA (Nonlinear Damage Analysis) using the above 
described iterative method. The steps involved in the process of solving are briefly described below. 

(1) INCREMENT: Loop for each load increment 

(1) Calculate the load or applied displacement increment for the current incremental step 
or input the load/applied displacement increment. 

(2) ITERATE: Loop for full Newton-Raphson iteration: 

(1) Compute the residual load vector for this iteration subtracting the equilibrium 
load from the load computed for the increment. 

(2) Rotate the appropriate loads and applied displacements such that the degrees 
of freedom at the skew boundary (a boundary condition that is not along the 
global coordinate system) are normal and tangential to the skew boundary. 

(3) Assemble the stiffness matrices and find the equivalent loads for the applied 
incremental displacements. Since explicit integration is difficult, Gaussian 
points are used to evaluate the above integrals. 

(4) Solve for the incremental displacements using a linear solver. 
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(5) Add the solved iterative incremental displacements to the applied incremental 
displacements to obtain the complete iterative incremental displacements. 

(6) Rotate back the complete iterative incremental displacements at the skew 
boundaries to the global coordinate system. 

(7) Cumulate the complete iterative incremental displacements to the total mere- 
mental displacements. 

(8) Find the stresses due to the iterative incremental displacements. From the 
iterative deformation gradient and the stresses updated, compute the updated 
constitutive matrix D. From the total incremental displacements accumulated 
so far and the D matrix, calculate the equilibrium load vector. 

(9) Check if the convergence of solution is met using a particular convergence cri- 
terion. If convergence has not occurred, go back to the step ITERATE. 

(10) If divergence occurs according to the convergence criterion, then reduce the 
load increment appropriately as specified by the user and start the iterative 
solution over again for that load increment. 

(11) If divergence occurs for a load increment that has been reduced "m" times 
(specified by the user), then report "convergence not met" and leave the sol- 
ution phase. 

(12) If convergence has occurred, then perform the following operations before 
going for the next increment. 

(1) Update the nodal positions by adding the currently obtained incre- 
mental displacements. 

(2) Transform the quantities pertaining to the material property to the 
present configuration. 

(3) Print out the appropriate quantities pertaining to the converged incre- 
ment according to the user's specifications. 

(4) If the total load is not reached, go back to the step INCREMENT. 
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Fig. 2. Finite element meshes. 

STRESS AND DAMAGE COMPUTATIONS 

(1) Step 1. Retrieve e> cfy, <f>'j. Retrieve also the information whether the previous loading 
was a damage loading or not (IDAMG) and plastic loading or not (IYILD). 

(1) 

(2) 
(3) 
(4) 

If IDAMG = 0 when retrieved, then evaluate the incremental elastic-predictor 
stress al assuming that the loading is elastic. Use the undamaged elastic stiffness 
matrix for the calculation (dff{/«£,yu dt*/)- 
If IDAMG * o when retrieved, use (dag " Eyudc*/)- 
Calculate the incremental elastic-predictor stress of matrix constituent dff^p. 
Check if the predicted stress state of matrix constituent is inside the yield surface 

or not. 

Table 1. Material properties 

Matrix (Ti-14Al-21Nb) 

Modulus 8 x 104 MPa 
Poisson's ratio 0.30 
Initial volume fraction 0.65 
Yielding stress of 360 MPa 
Kinematic hardening parameter b 90 MPa 

Fiber (SiQ 

41 x 104 MPa 
0.22 
0.35 

Table 2. Local damage parameters 

Matrix damage Fiber damage Interfacial damage 

O.OS 0.06 0.075 
0.08 0.06 0.065 
0.08 0.06 0.065 
0.65 0.55 0.55 
0.65 0.55 0.70 
0.65 0.55 0.70 
0.003 0.007 0.008 

*1 

»J 

0.003 0.007 0.001 
0.003 0.007 0.001 
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Fig. 3. (a) Stress-strain curves of [±45]s layup. (b) Stress-strain curves of [0/90]$ layup. 
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(5) If the stress state of matrix constituent is inside the yield surface then: 

(1) Assign elastic stiffness to the constitutive stiffness and the predictor stress 
increment to the actual computed stress increment. 

(2) Set IYILD = 0 indicating the elastic loading has taken place. 
(3) Exit to Step 2. Otherwise, go to the next step. 
(4) Set IYILD = 1, then: 

(1) Calculate the elasto-plastic stiffness D (when IDAMG = 1) or D 
(when IDAMG = 0). 

(2) Update the quantities By, of, <tfj, a™. 
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Fig. 4. Strain contours for [±45]s layup (in •/•). 
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Fig. 5. Strain contours for [0/90Js layup (in %). 
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(2)  Step 2 

(1) 
(2) 
(3) 

(4) 

Check the damage criteria using the updated quantity o#. 
If damage criteria f < 0, then IDAMG ■ 0. Exit from the routines. 
If damage criteria gr>0, then IDAMG * 1. Calculate the damage 
increment d<pr and update damage quantity <f>r. 
Store the updated quantities in a file. 

APPLICATION TO THE DOG-BONE SHAPED SPECIMEN AND THE CENTER- 
CRACKED LAMINATED PLATES 

The finite element method is used for solving a dog-bone shaped specimen and a center- 
cracked laminate plate shown in Fig. 1 that is subjected to inplane tension. Due to symmetry in 
geometry and loading as shown in Fig. 1, one-quarter of the plate needs to be analyzed. Two- 
dimensional plane stress analysis rather than three-dimensional analysis is used here since the 
thickness of plate is much smaller than the other dimensions. Applying the appropriate bound- 
ary conditions for the symmetry, both one-quarter of the center-cracked laminate plate and the 
dog-bone shaped specimen are discretized using plane stress finite elements. The finite element 
meshes chosen for analyzing the problems are shown in Fig. 2. The four-noded quadrilateral el- 
ement is used in both finite element analyses. 

Two types of laminate layups (±45), and (0/90), each consisting of four plies are used here. 
The thickness of each ply is equal to 0.254 mm. Since both layups are symmetric, no curvature 
is assumed. Hence, the strain through the plate thickness is assumed to be the same. The ma- 

BB 
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Fig. 6. Stress contours for £±45]s tayup (units are in MP»). 

terial properties and damage parameters using the proposed constitutive model are listed in 
Tables 1 and 2, respectively. 

The following convergence criterion is used in this analysis which is based on the incremen- 
tal internal energy for each iteration in that incremental loading[14]. It represents the amount of 
work done by the out-of-balance loads on the displacement increments. Comparison is made 
with the initial internal energy increment to determine whether or not convergence has occurred. 
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Convergence is assumed to occur if for an energy tolerance £E, the following condition is met: 

AUmC*1*-"+1 F{'"1)) < 9t{*Vm(*lR-" /•)). (130) 

where LlP is the incremental displacement residual at the (i)th iteration, (" * XR-* * 1fl'~ iy) is 
the out-of-balance force vector at (»-1) iteration and (AC/^C * !Ä-"/))is ^e internal energy 
term for the (Oth iteration in the (n + l)th increment. Divergence is assumed to occur if the 
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Fig. 8. Comparison of damage elasto-plastic analysis with elastic analysis of stress ery contours around 
the crack tip for (±45)s layup (units are in MPa). 

out-of-balance internal energy for the (/- l)th iteration is greater than the out-of-balance in- 
ternal energy for the (Oth iteration. 

The load is incremented with uniform load increments of 5 MPa until the principal maxi- 
mum local damage value <pp reaches 1.0 (<j>rp2.1.0). The principal maximum local damage value 
4>p is given by: 

*;= r = m, f, d. 031) 

Consequently', material failure at integration point is assumed when <pp^l. The principal 
damage value of the integration point in all elements is monitored at each load increment since 
it is used to determine the onset of macro-crack initiation of the material. 

The dog-bone shaped specimen failed when the final load of 270 MPa was reached for the 
(±45)s layup and 480 MPa for the (0/90)s layup. These failure loads are close to the experimen- 
tal failure loads 276 MPa for the (±45)s layup and 483 MPa for the (0/90)s layup [15]. The ma- 
terial failure for the center-cracked specimen occurs at the front of the crack tip when the final 
load of 80 MPa is reached for the (±45)s layup plate and 120 MPa for the (0/90)s layup plate. 

DISCUSSION OF THE RESULTS 

The stress-strain curves from both the finite element analyses and experiments of the two 
types of layups of the dog-bone shaped specimens are shown in Fig. 3. Good correlation is 
shown between the finite element analysis results and the experimental data obtained by 
Voyiadjis and Venson[15]. 
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Fig. 9. Comparison of damage elasto-plastic analysis with elastic analysis of stress on contours around 
the crack tip for (0/90)s layup (units are in MPa). 

Strain contours for the (±45)s layup and (0/90)s layup of the center cracked plates are 
shown in Figs 4 and 5, respectively. Since the two types of layups are symmetric, the strains in 
each laminae of the layup are the same. However, the stress and damage distributions are differ- 
ent for each laminae of the layup since each laminae has a different stiffness. Stress contours for 
each laminae are indicated in Fig. 6 for the (±45)s layup and Fig. 7 for the (0/90)s layup. In 
Figs 8 and 9, comparison is made between the damage analysis and the elastic analysis for the 
stress cyy contours around the crack tip. The damage analysis shows considerable stress re- 
duction due to the damage around the crack tip. The stress eyy at the front of the crack tip as 
obtained from the elastic solution is higher than that of the material strength of the layup. 
However, in the damage elasto-plastic analysis, the stresses are reduced such that they are close 
to those of the material strength. The oy> stress reductions at the front of the crack tip are more 
than 50% for [±45], 40% for [0] ply and 80% for [90] ply. Stress redistributions are clearly indi- 
cated in Figs 8 and 9. Primarily due to the stress reduction around the crack tip, the stress is 
therefore transferred to the outer portion away from the crack tip. This is clearly indicated in 
Fig. 9 where the stress reduction at the 90° ply is primarily due to considerable interfacial 
damage. 

The local damage contours around the crack tip are shown in Figs 10-13, for the failure 
loads in the case of [+45], [-45], [0], and [90] ply, respectively. For the [±45] layups, all types of 
damage such as matrix, fiber and interfacial are developed. Fiber damage is considerably more 
spread in the [0] ply than the interfacial damage. On the other hand, interfacial damage is more 
pronounced with matrix damage for the [90] ply. However, fiber damage is much less developed 
in the case of the [90] ply. This is in line with the experimental results obtained by Voyiadjis 
and Venson[15]. 
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SUMMARY AND CONCLUSIONS 

The proposed constitutive model is implemented numerically using the finite element 
method. The model is used to analyze the dog-bone shaped specimens and the center-cracked 
laminated plates subjected to inplane tensile forces. Very good correlations are demonstrated 
between the numerical results obtained using the proposed theories and the experimental results 
for uniaxial tension. The stress and damage contours in the case of the center cracked plate 
show that stress redistributions and damage are qualitatively in line with the physics of defor- 
mation. The analysis presented here allows the separate quantification of the different types of 
damages such as matrix, fiber or debonding. 
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The authors are currently working on damage due to delamination which will be introduced 
into the proposed model in future work. In order to capture delamination due to interlamina 
stresses, a three-dimensional, finite element analysis will be performed. 
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APPENDIX A 

Mori-Tanaka's strain and stress concentration tensors 

The expressions for the elastic stress and strain concentration factors given here are based on the Mori-Tanaka method. 
In the recent paper byChen et a/. [16], the expressions for the elastic strain concentration factors Ä' and the elastic stress 
concentration factors B' are given by 

KIWCKMK*»<    r«m,f (Al) 

*5«-*#,$*.    r = m. f. (A2) 

where 

^-«■Ä^ + rt^, (A3) 

&«*■ *■£* + ?£«■ (A4) 

The tensors A' and fr are termed the partial concentration factors for strain and stress, and are expressed in the follow- 
ing form: 

^-[Wz + ^mß*-^)]-1 (A5) 

*£*/ * fa ■ J (V<c + M#) (A6) 

*Sw"W (A8) 

where & and E* are the elastic stiffness tensors of the fiber and matrix, respectively. The tensors of P and Q depend 
only on the shape of the inclusion and the elastic moduli of the surrounding matrix. For example, for an inclusion in the 
shape of a circular cylinder in isotropic matrix, the tensor P written in matrix form (6x6 array) is given by 

[^^-^«sr; «PP JJMi^MPjWfW^^^ . Ji.j..MM.Al".i IIIIH«WI»#!I« 
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fp composite where £" is Young> modulus of the matrix, X" is the Poisson ratio of the matrix and G* is the shear modulus of the 
matrix. The tensor Q in eq. (16) is given by 
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Anisotropie Damage Effect 
Tensors for the Symmetrization 
of the Effective Stress Tensor 
Based on the concept of the effective stress and on the description of anisotropic 
damage deformation within the framework of continuum damage mechanics, a fourth 
order damage effective tensor is properly defined. For a general state of deformation 
and damage, it is seen that the effective stress tensor is usually asymmetric. Its 
symmetrization is necessary for a continuum theory to be valid in the classical sense. 
In order to transform the current stress tensor to a symmetric effective stress tensor, 
a fourth order damage effect tensor should be defined such that it follows the rules 
of tensor algebra and maintains a physical description of damage. Moreover, an 
explicit expression of the damage effect tensor is of particular importance in order 
to obtain the constitutive relation in the damaged material. The damage effect tensor 
in this work is explicitly characterized in terms of a kinematic measure of damage 
through a second-order damage tensor. In this work, tensorial forms are used for 
the derivation of such a linear transformation tensor which is then converted to a 
matrix form. 

Introduction 
In 1958. Kachanov (Kachanov, 1958) introduced the concept 

of effective stress in damaged materials. This pioneering work 
started the subject that is now known as continuum damage 
mechanics. Research in this area has steadily grown and reached 
a stage that warrants its use in today's engineering applications. 
Continuum damage mechanics is now widely used in different 
areas including brittle (Krajcinovic, 1983; Krajcinovic and 
Foneska, 1981) and ductile failure (Lemaitre, 1985, 1986). In 
this theory, a continuous damage variable is defined and used 
to represent degradation of the material which reflects various 
types of damage at the microscale level like nucleation and 
growth of voids, cavities, microcrack, and other microscopic 
defects. 

In continuum damage mechanics, the effective stress tensor 
is usually not symmetric. This leads to a complicated theory of 
damage mechanics involving micropolar media and the Cosserat 
continuum. Therefore, to avoid such a theory, symmetrization 
of the effective stress tensor is used to formulate a continuum 
damage theory in the classical sense. Several methods used in 
order to symmetrize the effective stress tensor are proposed by 
Lee et al. (1986) and Sidoroff (1979). A linear transformation 
tensor, defined as a fourth-order damage effect tensor, is pro- 
posed by Sidoroff (1979); however, no explicit form of this 
tensor is given. Moreover, damage tensor of higher order than 
two may fail to convey the physical meaning of damage. In 
addition, the works of Lee et al. (1986) and Sidoroff (1979) are 
confined to two-dimensional problems. Furthermore, no explicit 
expressions are derived for the fourth-order linear transforma- 
tion tensors for the general anisotropic damage behavior of 
three-dimensional problems. 

In this work, continuum damage mechanics will be reviewed 
based on the concept of effective stress. The effective stress 
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is defined as the stress acting on a hypothetical undamaged 
configuration that produces the same elastic strain or elastic 
strain energy as the actual state of stress acting on the current 
damaged configuration based on the equivalence hypothesis. 
This equivalence statement is known as the hypothesis of elastic 
strain equivalence or the hypothesis of elastic energy equiva- 
lence. Using the definition of the effective stress and the hypoth- 
esis of elastic energy equivalence, one can solve for variable in 
the hypothetical undamaged configuration, such as the effective 
strain. However, strain in the hypothetical undamaged configu- 
ration is equal to that in the current damaged configuration 
under the hypothesis of elastic strain equivalence. For a detailed 
review of the principles of continuum damage mechanics as 
used in this work, the reader is referred to the works of Kacha- 
nov (1958), Lemaitre (1985, 1986), Krajcinovic (1985), Cha- 
boche (1981, 1988a, b), Murakami (1988), Sidoroff (1979, 
1980), and Voyiadjis and Kattan (1992). 

In a general state of deformation and damage, the effective 
stress tensor 9 is related to the stress tensor a by the following 
linear transformation: 

ff« = Mitl,ou (1) 

where tr is the Cauchy stress tensor and M is a fourth-order 
linear transformation operator called the damage effect tensor. 
Depending on the form used for M, it is very clear from Eq. 
(1) that the effective stress tensor 9 is generally not symmetric. 
Using a nonsymmetric effective stress tensor as given by Eq. 
(1) to formulate a constitutive model will result in the introduc- 
tion of the Cosserat and micropolar continua. However, the use 
of such complicated mechanics can be easily avoided if the 
proper fourth-order linear transformation tensor is formulated 
in order to symmetrize the effective stress tensor. Such a linear 
transformation tensor called the damage effect tensor is obtained 
in the literature (Lee et al., 1986; Sidoroff, 1979) using symme- 
trization methods. However, it lacks a systematic and consistent 
approach. It is the aim of this work to provide a solid basis for 
such transformation of the second-order stress tensor and its 
justification for the symmetrization. Three different formula- 
tions for symmetrization of the effective stress tensors proposed 
by Lee et al. (1986) and Sidoroff (1979) are described below. 
The effective stress tensor is symmetrized using the following 
laws: 
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v. = (6,k - ^y^cAäj, - hi)-"2 (2) 

v,j = il<rA6tj - 4>kjy
] + (6jk - ^r'ffa] (3) 

o,j - iWntfi, - 4>kj) + (6ji - <f>jk)Vkl). (4) 

Other forms for symmetrization are defined by many researchers 
through the fourth-order damage effect tensor such as that by 
Cordebois and Sidoroff (1982) 

M,kJI = (6,„ - *„)-'"(«,■, - </>„r"2. (5) 

by Murakami and Ohno (1980) 

Mltjl = $[«„(&, - d>u)-' + 6„(6kJ - <t>kjy> 

+ (6,j - *(/)-'6u + (ft, - *„)'%],   (6) 

by Betten (1983) 

A/,.;,   =   j[(ft,   -<*>„)-' («U-^)-' 

+ (ft, -*„)-'(&,-*»,)-')],    (7) 

and by Lu and Chow (1990) 

My, = 5[exp(*,J/2) exp(^u/2) 

+ exp(<*„/2)exp(<M2)].   <8) 
<£ in the above equations is a damage tensor characterized by 
a second-order symmetric tensor and is given by (Murakami. 
1983) 

4>v = X bifi^nj (no sum in k) (9) 

where n' is an eigenvector corresponding to the eigenvalue. 
4>k, of the damage tensor. <f>. Voyiadjis and Venson (1995) 
quantified the physical values of the eigenvalues &k (k = 1, 2, 
3) and the second-order damage tensor 4> for the unidirectional 
fibrous composite by measuring the crack density with the as- 
sumption that one of the eigendirections of damage tensor coin- 
cides with the fiber direction. This introduces a distinct kine- 
matic measure of damage which is complimentary to the defor- 
mation kinematic measure of strain. A thermodynamically 
consistent evolution equation for damage tensor <f> together with 
a generalized thermodynamic force conjugate, Y, to the damage 
tensor is presented in the paper by Voyiadjis and Park (1995). 

Numerous fourth-order damage effect tensors are defined by 
using the symmetrization laws indicated above. However, only 
the one by Cordebois and Sidoroff (1982) may be obtained 
from the symmetrization procedure given by Eq. (2). One can- 
not deduce explicitly the fourth-order damage effect tensor M 
from the remaining proposed procedures. In the case of Corde- 
bois and Sidoroff (1982) it is impossible to get the explicit 
form of the square root of the second-order tensor in Eq. (5). 
Alternatively, the damage effect tensor using the fourth-order 
damage tensor t}> is defined by Chaboche (1979) as follows: 

MM = (hiji - tjliiji) 

where l,t], is a fourth-order identity tensor and is given by 

litji - 5 (A; Aw + A/A.,)- (11) 

However, it is not easy to characterize physically the fourth- 
order damage tensor \\i,jk, rather than the second-order damage 
tensor <j>tJ. For the case of isotropic damage, the fourth-order 
damage tensor is defined by Ju (1990) as follows: 

•A.*;/ = d\6ik6ji + d2l„ ,kji (12) 

where d, and d2 are scalar (dependent or independent) damage 
variables. Using the second-order anisotropic damage tensor <£>,, 

in the damage effect tensors given by Eqs. (5), (6), (7), and 
(8) one may lose the physical view of the net stress tensor due 
to the presence of the off diagonal elements of the damage 
tensor <f>0. In order to avoid this problem, the principal damage 
tensor rather than the second-order damage tensor is used in 
conjunction the damage effect tensor. However, the eigendirec- 
tions of the damage tensor do not coincide with the stress tensor 
or eigendirection of the stress tensor. Since the damage tensor 
tf> always has three orthogonal principal directions n'(* = 1, 
2, 3) and the three corresponding principal values 4>k(k = 1,2, 
3), Eqs. (2), (3), and (4) can be expressed as follows in the 
coordinates that coincide with the three orthogonal principal 
directions of the damage tensor: 

*■»  =  fcmrtfm  ~  On,)'1   +   (A,, "   &,)"'*n.] (14) 

<7m*  = jl*,nr(A*  ~  4>n,)  +   (A, ~  <*>„,) *nn] 

where «£ is a principle damage tensor that is given by 

4>,j = bikbji(t>u 

(15) 

0 
0 

0 
4» 
0 

0 
0 (16) 

and the second-order transformation tensor b is given by 

ba = 
W 1      n2     13 
n]   n2   «5 
n]   «1   n\ 

(17) 

This transformation tensor called the proper orthogonal tensor 
requires that 

b,jbkJ = 6,k. (18) 

The effective stress tensor in the principal damage direction 
coordinates system is given by 

ff™ = bmib„jV,j. (19) 

Similarly, the stress tensor in the principal damage direction 
coordinates system is given by 

&pq  —  bptbatOu. (20) 

Using the principle damage direction coordinate system, Eq. 
(1) is given by 

Gmn   "~  W+mpnqGpq (21) 

The fourth-order damage effect tensors given by Eqs. (5), (6), 
(7), and (8) should be now expressed as follows: 

Mnpru;  =   (A»/,  -   4>mr)~V2((>nq ~  4>n<,) (22) 

(10)     M^n, = jtft^ft*, - 4>„)-1 + ft^ft,,, - <*>,,„)-' 

+ (ft™ - <*0~'<5W + (A*, - «LJ-'M    (23) 

Mmpru,  -  j[(An*  —  Omit)'   (ft*,  ~  4>pq)~ 

+ (ft*-&*)"'(«„,-£„)-')]    (24) 

M^ = 5[exp(^/2) exp(<j>M/2) 

+ exp(^/2)exp(^„/2)],   (25) 

respectively. These tensors are termed the principal damage 
effect tensors. 
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Fourth-Order Anisotropie Damage Effect Tensor 
The explicit representation of the fourth-order damage effect 

tensor M using the second-order damage tensor <f> is of particu- 
lar importance in the constitutive modeling of damage mechan- 
ics. However, it is impossible to use the damage tensor <£ rather 
than the principal damage tensor 4» directly in the formulation. 
Therefore the damage effect tensor M in Eq. (1) should be 
obtained from Eq. (21) using coordinate transformation. 

Substituting Eqs. (19) and (20) into Eq. (21), one obtains 
the following relation: 

<7«   =  bmibnjbplcbqlMmp^kl. (26) 

Therefore the fourth-order tensor M in Eq. (1) is given as 
follows: 

In order to obtain the matrix form of the damage eucct ic.u>UI, 
the stress tensors a0 and uu in Eq. (1) are converted into vector 
form as follows: 

[a]  =  {<T|I ^22 O» Oil <?23 0\i) (33) 

{ZT)   =   (ZT,1  ^22^33 »12»23?.3}7. (34) 

Using the notation of Eqs. (33) and (34), Eq. (1) is now 
represented in matrix notation as follows: 

{*} = [M][o) (35) 

where [M] is the 6 X 6 matrix representation of the fourth- 
order tensor M. The explicit form of the matrix [M] is given 
as follows: 

[M] = 031^31 

011021 

021031 

Ollfl31 

0|20|2 

O22O22 

O32O32 

fll2Ö22 

O22O32 

fll2<332 

OI3Ö13 

Ö23Ö23 

033^33 

023023 

023033 

O13O33 

(O 

(O 

2oiiOi2 

2fl2|022 
2Ö31Ö32 

1O22  + Ol202l) 
|032  + 023031) 

(a,,032 + 0|3a3|) 

20,20,3 

2022023 

2Ö32033 
(Oi2023  + Ol3022) 

(O22O33  + 023032) 
(0,2033 + 0,3031) 

2a,,0,3 
2fl21Ö23 

2o3ia33 
(fl,,023  +  Ol302l) 

(021^33  +  02303l) 

(a, ,033 + 0,303,) 

M,kli = bmibnppit>¥M„n?q- (27) 
It is clear that the fourth-order damage effect tensors presented 
by Eqs. (5). (6), (7), and (8) differ from the damage effect 
tensor obtained by Eq. (27). Therefore the fourth-order damage 
effect tensor presented by the Eqs. (5),(6),(7), and (8) should 
be expressed in the princpal damage direction coordinate system 
using the principal damage tensor #. 

One of the explicit expression for the fourth-order damage 
effect tensors using the principal damage effect tensor given by 
Eq. (22) is presented here. The principal damage effect tensor 
given by Eq. (22) can be written as follows: 

where the second-order tensor ä is given by 
(28) 

It is clear that the various explicit representation forms of the 
fourth-order damage effect tensors given by Eqs. (5),(6),(7), 
and (8) using the second damage tensor (f> are violated by the 
tensor transformation law. 

Matrix Forms of the Damage Effect Tensors for Two- 
Dimensional Problems 

The explicit matrix forms of the damage effect tensors for 
two-dimensional problems are presented in this section. For the 
shake of simplicity, a plane state of damage, <j>3 = 0 or <£j3 = 
<f>23 = (£32 = 4>i3 = 4>3i = 0. is assumed for both plane stress 
and plane strain problems. Similar stress vector of Eqs. (33) 
and (34), for the two-dimensional problems are given by 

O-mo   = 

0 

1 

v 1 - <*>: 
0 

VI - 4>2 

[&}   =   {a,,  <722 ÖnV 

{<?} = {?„ &22vl2)
T. 

(37) 

(38) 

(29) Using the notation of Eqs. (37) and (38), one obtains Eq. (21) 
represented in matrix notation as follows: 

{*} «[#]{*} (39) 

Substituting Eq. (28) into Eq. (27), one obtains the following 
relation: 

M,kjl =   b^bnjbptbqPmpä*! 

= aitaj,. (30) 

Using Eq. (30), a second-order tensor a is defined as follows: 

a« = bmibpkämp- (31) 
The matrix form of Eq. (31) is as follows: 

where the 3 X 3 matrix, [M], termed principal damage effect 
matrix is given by 

[M] = 
[A/1111     A/m2    A/,,12 + M1211 

Af212l      A?2222      A/2122 + A/222l   I 
AJ1121      A/,222      A/1122 + A/1221J 

(40) 

The principal damage effect matrices corresponding to Eqs. 
(22), (23), (24), and (25) are as follows, respectively. 

[a] = lb]T[d][b] 

b\\b\i         b2lb2\          ^31^31 b\[bi2         b2\b22 631^32 b]\bsi 

Vl -<j>, Vl - 4>2 Vl -<j>3 VI - <£, Vl - <j>2 Vl - & Vl - <j>, 

O12P11         b22b2\         b}2b}\ b\2b\2         b22b22 £32^32 ^12^13 b22b2y b*2bn 

Vl -<*>, Vl -4>2 Vl - tf>3 Vl - <j>, Vl - 4>2 Vl -& Vl - tf>,    Vl -<fc    Vl - tf>3 

^13^11 ^23^21 ^33^31 ^13^12 ^23^22 ^33^32 b^bn 

Vl - </>,    Vl - 4>2    Vl -4>,  Vl -4>t    Vl - j>2    Vl — ^»3   Vl - <*>, + 7 
^23^23 ^33*33 

(32) 

108 / Vol. 64, MARCH 1997 Transactions of the ASME 



[M} = 

1 -<*>, 

1 

1 -d>2 

0 
Vd -<M(i -fa). 

where the transformation matrix, [7"], and its inverse matrix, 
[T]'' are given by 

(41) 

m = 
cos2e 
sin20 

cos 0 sin 6 

sin20 -2 cos 0 sin 0' 

cos20 2 cos 0 sin 0 

-cos 0 sin 0    cos20-sin20. 

(49) 

[M} = 

1 -<*>, 

1/      1 1 

4Vl-tf>,      l-<*>2 

0 

1 

[A/] = 

(1 -<M2 

1 

[M] = 

2(1 -<MO -&) 

0 

exp(<£,/2) exp(<£,/2) 

i(exp(<J)1/2)exp(*,/2) + 1) 

exp(<£,/2) 

U ]   i   M n 
4Vi-<^,  i-.&y 

i 0 (42) 
i -& 

0             U 1                1 )J 0            ill - <*>,       1 - *s 

l 0 
2(1 -$,)(! -&) 

1 0 (43) 
(1 -*,)2 

1 
°                  2(1- <M(1 -<*>:) J 

i(exp(4>,/2)exp(4>,/2) + 1)    2exp(<J>,/2)" 

1)         exp(cJ>2/2)exp(<£:/2)         2 exp(<fe/2) (44) 

exp(<£2/2) 2         J 

where the principal damage values, 4>x and <t>2- are given by 

<*>, = 

[7-]"' = 

-     + <*>!: (45) 

cos20 sin20 2 cos 0 sin 0 

sin20 cos20       -2 cos 0 sin 0 

_-cos0sin0   cos 0 sin 0    cos20-sin:0- 

4>2  = 
<t>\l   +  4>12 d>U   +  </>22 + <*>?: 

where 0 is given by 

a      K    -■ /     V>M     \ 

(50) 

(51) 

.,...„.. „ .      .    ■    j     Substituting Eqs. (47) and (48) into Eq. (39), one obtains the 
respectively. Finally, the damage effect matrix can be obtained    foilowjn„ relation- 
by coordinate transformation. The complete set of transforma- 
tion equations for stresses in the principal damage direction {5} = [T]'{[M}[T]{a} 
coordinate system is given by 

= [Af]{a). (52) 

{*) = mM (47) The damage effect matrix [A/] is defined as follows: 

[M] = [T)-'[M][T]. (53) Similarly, the effective stress vector in the principal damage 
direction coordinate system is given by 

Using the principal damage effect matrix given by Eq. (41) 
{jf) = [7"] (ff} (48)    the damage effect matrix [M] is given by 

[M] = 

c* s' 2c*'s- cV        cV -2c2s2 -2cys     2cs> 2(c*s - cs>) 

!-<*>, + 1 - 4>z + V(l -<*,)(! -4>2)    1 " 4><    ] ~ *2    V(l-4>i )(!-&)    ' - *i    J - *2    V( 1-<*,)(! -*;) 

-2r'i 2cV -2C53        2C3J -2(C35-C5') 

!-<*>,     l-*2    V(l-4>, )(!-*:)     l-*i     l-*2    V(l-4>,)(1-*:)     l-*i     I"*:    V(l-*,)(!-«;) 

2(r'i-c53) 

-«, 
               -2(C35-CS3) 2cV       2cV (c2-s2)7 

1 - 4>2 T V(l -*,)(! -<*>:)     1 - «. """ 1 - *: " V(1-<M0 -«:)     1 " tf 1     1 " 4>2    V( 1 -<M(1 -<fe) 
-2f35      2ri3 

• + r- + 
-2cs*     2c2s 

■ + r- + - 

(54) 
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Conclusions 
The fourth-order anisotropic damage effect tensor, M, using 

the kinematic measure for damage, expressed through the sec- 
ond-order damage tensor <f>, is reviewed here in reference to 
the symmetrization of the effective stress tensor. This introduces 
for a distinct kinematic measure of damage which is complimen- 
tary to the deformation kinematic measure of strain. A thermo- 
dynamically consistent evolution equation for the damage ten- 
sor, tf> together with a generalized thermodynamic force conju- 
gate, Y, to the damage tensor is presented in the paper by 
Voyiadjis and Park (1995). It is pointed out that the principal 
damage tensor, <p, should be used in the formulation of the 
anisotropic damage effect tensor. Voyiadjis and Venson (1995) 
quantified the physical values of the eigenvalues, 4>t(k = 1,2, 
3), and the second-order damage tensor, <f>, for the unidirec- 
tional fibrous composite by measuring the crack density with 
the assumption that one of the eigendirections of damage tensor 
coincides with the fiber direction. 

The fourth-order anisotropic damage effect tensor in the prin- 
cipal damage direction coordinate system is termed the principal 
damage effect tensor. By coordinate transformation, the fourth- 
order anisotropic damage effect tensor is obtained. This fourth- 
order anisotropic damage effect tensor has both physical sig- 
nificance and explicit form. It is therefore not a mere implicit 
mathematical expression to transform the current stress tensor 
to a symmetric effective stress tensor. Moreover, an explicit 
expression of the damage effect tensor is of particular impor- 
tance in order to obtain the constitutive relation in the damaged 
material. 

In this work, tensorial forms are used for the derivation of 
such a linear transformation tensor which is then converted to 
a matrix form. The explicit matrix expressions of the damage 
effect tensor are derived for both three-dimensional and two- 
dimensional problems. Especially the damage effect matrix of 
two-dimensional problems can be expressed by the damage 
variables, (/>,,, 4>22 and <f>i2. 
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Damage in MMCs Using the GMC 
Part I: Theoretical Formulation 

George Z. Voyiadjis and Babur Deliktas 
Department of Civil and Environmental Engineering 

Louisiana State University 
Baton Rouge, LA 70803 

1    Abstract 

In this work the incorporation of damage in the material behavior is investi- 
gated. Damage is incorporated in the generalized cells model (GMC) (Paley and 
Aboudi, [17]) and applied to metal matrix composites (MMCs). The local incre- 
mental damage model of Voyiadjis and Park [26] is used here in order to account for 
damage in each subcell separately. The resulting micromechanical analysis estab- 
lishes elasto-plastic constitutive equations which govern the overall behavior of the 
damaged composite. The elasto-plastic constitutive model is first derived in the 
undamaged configuration for each constituent of the metal matrix composite. The 
plasticity model used here is based on the existence of a yield surface and flow rule. 
The relations are then transformed for each constituent to the damaged configu- 
ration by applying the local incremental constituent damage tensors. The overall 
damaged quantities are then obtained by applying the local damage concentra- 
tion factors that are obtained by employing the rate of displacement and traction 
continuity conditions at the interface between subcells and between neighboring 
repeating cells in the generalized cells model. Examples are solved numerically in 
order to explore the physical interpretation of the proposed theory for a unit cell 
composite element. 

2    Introduction 

In the analysis of composite materials one can fallow a continuum approach or 
a micromechanical approach. In the continuum approach, the composite mate- 
rial is treated as an orthotropic or transversely isotropic medium. The classical 
equations of orthotropic elasticity are used in the analysis . This approach makes 
no distinction between the two different phases of the matrix and the fibers. It 
lacks accounting for the local effects especially due to the interaction between the 
different phases. 

For the last two decades, researchers have been using micromechanical 
methods in order to analyze the multiphase composite medium. Using the 
micromechanical approach has distinct advantages over the continuum approach 



in the sense that the local effects can be accounted through the volume average 
stress and the strain increments in each of the phases. This in turn, is linked 
with the overall composite behavior. Different micromechanical models employ 
different method of achieving the local-overall relations. Hill [18, 19] employed 
the volume averages of stress and strain increments in the different phases and 
introduced concentration tensors to relate these volume averages of the local fields 
to the overall uniform increments. Dvorak and Bahei-El-Din [6, 7, 8] used Hill's 
technique to analyze the elasto-plastic behavior of the fiber reinforced composite. 
They considered the matrix to be elasto-plastic while the fiber is elastic . In 
the micromechanical analysis of elasto-plastic composites Dvorak and Bahei-El- 
Din [8] identified two distinct deformation modes, the matrix dominated and the 
fiber dominated. The first mode is prevalent for the case of stiff elastic fibers 
while the second mode is more treated as a general case of plastic deformation of 
a heterogeneous medium. 

Recently, Paley and Aboudi [17] developed the generalized cells model which 
is capable of predicting the behavior of metal matrix periodic composites from the 
given properties of its constituents. The generalized cell method is developed on 
the basis of the method of cells model which was originally proposed by Aboudi [1]. 
Its applicability and reliability in the sense of composite properties such as elastic, 
thermo-elastic, viscoelastic response of composites, and fatigue failure curves are 
discussed by Aboudi [2]. 

Kachanov was the first pioneer who started the continuum damage mechan- 
ics . Lemaitre [15], Chaboche [3] and Krajcinovic [5] used the continuum damage 
mechanics to analyze different types of damage in materials ranging from brit- 
tle fracture to ductile failure. Researchers have used continuum damage model 
to analyze damage in composite materials by modeling the composite medium 
as transversely isotropic. However, the proposed continuum approach by these 
researchers made no distinction regarding the different phases in the analysis of 
deformation and damage. 

In the micromechanical approach, the local damage effects are characterized 
separately in the sense that the damage tensors Mr are introduced for each phase 
of the composite system (Voyiadjis and Kattan [23]). For the two phase compos- 
ite, a matrix damage tensor, MTO, is assumed to reflect all type of damages that 
the matrix material undergoes like nucleation and coalescence of voids and micro- 
cracks, and a fiber damage tensor ,M', which is considered to reflect all types of 
fiber damages that fiber materials undergo such as, the fracture of fiber (Voyiadjis 
and Park, [26]). In this research the interfacial damage effect is also expressed 
through the fourth order damage tensorMd. Finally the overall damage tensor M 
is introduced that accounts of all those separate damages of the matrix, fiber, and 
interfacial effects. However, in this work the interfacial damage effect is considered 
as a component of the subcell itself. This can be either matrix or fiber or any other 
material depending on which material occupies the corresponding subcell. 



A thermomechanical constitutive theory was recently proposed by Allen and 
Haris [4] to analyze the distributive damage in the elastic composite. In particular, 
the problem of matrix cracking has been extensively studied in the literature (Dvo- 
rak et al [10]; Dvorak and Laws [9]; Laws and Dvorak). Recently, Voyiadjis and 
Guelzim [22] developed an incremental damage theory for metal matrix composites 
based on the modified damage model outlined by Voyiadjis and Kattan [23], and 
Voyiadjis and Park [26]. 

In this work, the incremental damage model by Voyiadjis and Park [26] is 
incorporated into the generalized cells model of Paley and Aboudi [17] in order to 
analyze the damage behavior of metal matrix composites under monotonic loading 
conditions. An attempt is made here in order to obtain damage parameters for 
each subcell micromechanically based on the incremental damage model which is 
developed within the frame of the effective stress concept as presented by Voyiad- 
jis and Guelzim [22]. The subcells (local) damage parameters are then related to 
the overall damage variables via the concentration tensors. These concentration 
tensors are derived in the damaged configuration in terms of the undamaged con- 
centration and the corresponding incremental damage tensors. A damage criterion 
(Voyiadjis and Park, [26]) is used here for the damage evolution for each subcell. 
The damage evolution mechanism for each subcell is considered separately, and the 
extremum principle is used in order to formulate the damage evolution expression. 
Finally damaged constitutive relations are formulated in order. Making use of the 
micromechanical model (GMC) which allows one to divide the repeating volume 
element into many subregions together with the incremental damage model, one is 
able to analyze the damage at various locations and at any increment of loading. 
This method provides a computationally efficient approach to predict the damage 
by using the GMC for MMCs. 

The incremental damage approach coupled with the micromechanical plas- 
ticity model is formulated here in order to analyze the damage behavior of com- 
posites in the plastic domain as well as in the elastic one. The fibers in this work 
are aligned and have a linear elastic behavior while the matrix is considered to be 
elasto-plastic material that obeys the von Mises yield criterion with an associated 
flow rule and a Ziegler-Prager kinematic hardening rule. However, the resulting 
yield condition for the damaged composite system is a combination of the gen- 
eralized Ziegler Prager rule and the Phillips type rule. The motion of the yield 
surface is described by a kinematic hardening rule that is a linear combination of 
the Ziegler-Prager kinematic hardening rule, and the Phillip's hardening rule in 
the direction of loading. In the numerical simulation of this work, the unit cell case 
of the GMC model is considered such that the repeating volume element consists 
of an elastic fiber region together with three elasto-plastic matrix domains. 



3    Theoretical Preliminaries 
3.1    The Generalized Cells Model 

The generalized cells model is the generalization of the method of cells (Aboudi, [1]) 
by taking any number of subcells rather than four subcells and considering the rate 
dependent relations of the subcell for modeling the multiphase composite materials. 
This generalization is particularly advantageous when dealing with elasto-plastic 
composites, since yielding and plastic flow of the metallic phase may take place at ^ 
different locations. The GMC is able to provide a more accurate representation of 
the actual microstructure. 

This micromechanical analysis, based on the theory of the continuum media 
in which equilibrium is ensured, can be summarized essentially as follows. A re- 
peating volume element of periodic multiphase composite is first identified. This is ^ 
followed by defining the macroscopic average stresses and strains from the micro- 
scopic ones. Continuity of traction and displacement rates on the average basis are 
then imposed at the interfacesbetween the constituents. The micro equilibrium is 
guaranteed by the assumption that the velocity vector is linearly expanded in terms 
of the local coordinates of the subcell. This forms the relation between the mi- M 

croscopic strains, and the macroscopic strains through the relevant concentration 
tensors. In the final step the overall elasto-plastic behavior of multiphase inelastic 
composite is determined. This is expressed as a constitutive relation between the 
average stress, strain, and plastic strain, in conjunction with the effective elastic 
stiffness tensor of the composite. In this study the same steps are followed but £ 
in addition the damage mechanics is incorporated by using the micromechanical 
approach in order to obtain the damaged response of each constituent as well as 
overall instantaneous damaged behavior of the elasto-plastic composite. 

A unidirectional fibrous composite is considered here in the method of cells. 
It is assumed that the composite has a periodic structure in which unidirectional ^ 
fibers are extended in the X\ direction. This representative volume element is 
shown in Figure (la). The representative volume element (Figure (lb)) consists 
of NßbyNy subcells such that the area of the cross section of each subcell is hßl7 

with ß = l...Nß,i — l..JV7 and each subcell has its own local coordinate system 
(xu x2

{ß), x3
(7)) with its origin located at the center of each subcell. A 

Unlike the method of cells, in this work the instantaneous behavior of the 
composite is considered. The displacement rate ii<^7)( dot denotes time derivative) 
is expanded linearly in terms of the distance from the center of the subcell (Paley 
and Aboudi,  [17]). This leads the following first order expression 

Of») = w<™ + ^Bim + ftw A^ (1) * 

where, tü/^ is the rate tensor of the displacement components at the center of 
the subcell, and 6{ , rpi are microvariables rates that characterize the linear 
dependence of the displacement rates on the local coordinates X2^,x3W. 



The small strain rate tensor and the constitutive law for the material that 
occupies the subcell (£7) are given by the following expressions respectively 

%3        2{   dxj    +    dxi   > W 

aV        — ^ijkl eij (3) 

The instantaneous stiffness tensor, D{fh\ depends on the deformation history, 
loading path and applied loading rate. In this study for elasto-plastic materials^ 
the von Mises yield criterion with an associated flow rule and the Ziegler-Prager 
kinematic hardening rule are used. This elasto-plastic tensor in the undamaged 
material is given by the following relation 

vU      "*'    Qdtä» E>«E»»toüF (4) 

where Q is given by 

a/(g-r) df(ß-r) 

*»« 

In equation (5), /P") is the von Mises yield criterion with kinematic hardening 
expressed in terms of the backstress tensor ä^'^. The material parameter b{ßrt 
pertains to the evolution behavior of the back stress (Voyiadjis and Kattan, [23]). 
In the special case of perfectly elastic materials Dm is replaced by the standard 
elastic stiffness tensor Em which characterizes the behavior of elastic materials 
in the subcells. More elaborate plasticity models for the in-situ characterization of 
metal matrix composites is given by the first author in other works (Voyiadjis and 
Ganesh, [24]) . However, in this work a simple model is used. 

The objective of the work outlined by Paley and Aboudi [17] is to solve the 
microvariables given in equation (1). This equation is substituted into the small 
strain tensor by employing the rate of displacement and traction continuity con- 
ditions at the interfaces between the subcells and between neighboring repeating 
cells in order to obtain the relation between the average subcell strain rate com- 
ponents and the average overall strain rate components via strain concentration 
tensors. The first step is to write a set of continuum equations in terms of the 
microvariables. These interface conditions are shown in Figures 2 and 3. Since 
it is ensured that at any instant the component of displacement rates should be 
continuous at the interfaces, the following relations can be obtained in terms of 



the micro variable rates using the continuity conditions of displacement rates at 
the interfaces between the subcells and the neighboring cell and these relations are 
given by 

«,,'«+lM<« = ^)-i/,^) (6) 

and 

All the field variables in equations (6) and (7) are evaluated at the centerline x[ß) 

for the subcell (ßy) and x[ß) for the subcell 0y). As indicated in Figure 2(b) since 
the interface is along the x3 direction one has 47) for the subcell {ßi) and x^] for 
the subcell (£7) and the interface is along the x2 direction. This relation can be 
expressed by 

zF = xW-hfi/2   or   4$)=xW + h$ (8) 

and 

x™ = xW-£y/2   or   x^=x^ + V2 (9) 

By employing a Taylor expansion of field variables in equation (6) together with 
equation (8) and omitting second and higher order terms, one obtains 

A similar expression can obtained by using equation (7) in equation (9) for the 
interface conditions along x3 direction such that 

«».<« 

These equations are valid in the equivalent continuum medium in which the 
repeating volume element can be defined by a point P. This mapping procedure 
of repeating volume elements at P within the equivalent homogeneous medium 
eliminates the discrete structure of the composite. Since a composite is subjected to 
homogeneous boundary conditions, the behavior of all repeating cells are identical, 
and a uniform field exits at the equivalent homogeneous medium. The governing 
constitutive laws of this equivalent continuum medium can be established by the 
generalized cells model. 

From equations (10) and (11) the Nß+N^ continuum relations can be written 
in terms of the microvariables 0,^7) and ^\ßl\ and their explicit expression can be 



found in reference [17]. The composite standard average strain rate e 7 is given 
by 

.    Nß   N-r 

ß=\ 7=1 

It is possible to derive a 2(Nß + A7) + Nß 7V7 4- 1 system of continuum relations 
expressed in terms of the subcell strain rate tensors v^' by using the previous Nß+ 
iV7 continuum equations together with expression (12). After tedious mathematical 
manipulations, these relation can be given as follow 

fcn^ti?0 /?,7=1...,^,AT7   (NßN^   relations)     (13) 

.   N0 

^2 = J^4W 7 = l'--,^7   (^7    relations) (14) 
%=i 

f33 = 7^Vi27) 0=1—,NP   (Nß    relations) (15) 
7=1 

.     Nß   N7 
2|23 = 17 H £ kß ^^ (°ne relati0D) (16) 

ß=l 7=1 

N7 

2^ = ?E^i37) ß=l—,Nfi   (Nß    relations) (17) 
7=1 

1   Nß 

2e12 = r 53 hß^P 7 = 1 • • • , Ny   (N7    relations) (18) 
%=i 

The above 2(Nß + 7V7) + NßNy + l continuum relations are expressed in matrix 
form by Paley and Aboudi [17] as follows 

AGi, = Jk (19) 

where the 6-order average strain-rate vector is of the form 

[?] = [fa, in, C33 J23, f 13,112] (20) 

and the 6NßN^ order subcells strain-rate vector is defined as follows 

m^ii,,*w,,*pi,...i(w] (21) 



The AG is 2(Nß + iV7) + NßN7 +1 by 6NßNy matrix and involves the geometrical 
properties of the repeating cells while J is a 2{Nß + 7V7) + NßN^ +1 by 6 matrix . 

One now needs 5NßN7 - 2{Nß + JV7) - 1 continuum relations to complete 
the 6 NßN7 set of continuum equations. They can be obtained by imposing the 
continuity of the rates of traction at the interfaces between the subcells and between 
neighboring repeating cells. The continuity of average stress rates at the interfaces 
can be expressed by the following relations 

and 

a2j    = <?2j   >J = 1>2,3 

*™-*{*\j-1,2,3 '3i 

(22) 

(23) 

One can express the average stress rate t\j   in the subcells in terms of the average 
dßy) strain rate e};- by using the constitutive law of the material (equation (3)) in the 

subcells. Using equation (22) and (23) the remaining continuum equations which 
can be written in the matrix form as follow 

Ami9 = 0 (24) 

Am is 5NßNr 2{Nß + NJ-1 by 6NßNy matrix. Am involves the instantaneous 
properties of the material in the various subcells. The 6Nß 7V7 continuum equation 
can be written in the following matrix form by combining equations (19) and (24) 

Amit = Kk 

where the 6Nß 7V7 order square matrix A* is given in the form 

A* = 
AG 

and   Ä" = 0 
J 

(25) 

(26) 

One can now solve the linear system of equations (25) in order to obtain the 
following expression 

it = Ack 

where 

*c=l<\   K 

(27) 

(28) 

Ac is the instantaneous strain concentration tensor that relates the average strain- 
rate tensor in the subcell to the average overall strain-rate tensor. The matrix Ac 

can be partitioned into a number of Nß JV7 by 6x6 matrices as shown below 

Ac = 
Ain> 

A^e^) 
(29) 



A\?^ is the instantaneous strain concentration tensor for the subcell which relates 
the average strain rate tensor in the subcell (ßj) to the average total strain rate 
tensor. One can now obtain the overall effective instantaneous stiffness tensor of 
the composite by using the strain concentration tensor of the subcell along with 
its respective subcell constitutive equations (Paley and Aboudi, 1992). 

3.2    Incremental Damage Model 
In this study, the incremental damage model is used in order to characterize the 
damage using the fourth order incremental damage tensor mS^ where (ßj) desig- 
nates the subcell. The concept of effective stress as generalized by Murakami [16] 
is used here in order to introduce the damage for the (Nß by iV7) constituents of 
the composite system. The m^ is assumed to reflect all types of damages that 
corresponding subcells undergo such as nucleation and coalescence of voids, and 
microcracks. This local damage response is linked to the overall damage response 
of the composite medium through the stress and strain concentration tensors. The 
elasto-plastic stiffness tensor is derived for the damaged composite using the sub- 
cell incremental damage tensors in the generalized cells model, and the relation 
between the subcell incremental damage tensor m^7^ and the incremental overall 
damage tensor m. 

Kachanov [12] introduced a simple scalar damage model for isotropic mate- 
rials by using the concept of the effective stress. The incremental damage model 
was further developed subsequently on the base of the effective stress concept for 
anisotropic materials by Voyiadjis and Park [26] and Voyiadjis and Guelzim [22] 
In its formulation three configurations are assumed namely the initial undeformed 
and undamaged configuration Co , the deformed and damaged configuration C, 
and the state of the body after it has only deformed without damage C, (Voyiadjis 
and Kattan [23] ) as indicated in Figure 4. 

By considering the equality of forces between the damaged, C, and the un- 
damaged fictitious configuration ,(?, the following linear transformation can be 
written between the Cauchy stress in the configuration C, and the effective Cauchy 
stress in the configuration C 

9Ä = a A   or   c= (1 - <t>)~1 (30) 

where 

<t>  =   —j- (31) 

and 4> is a scalar (Kachanov [12]). In the above equations A and Ä are the 
areas of the crossections of the axially loaded bar in the C, and C configurations 
respectively. The term <p is a measure of damage. The concept of effective stress 



as generalized by Murakami [16] is given through the generalization of equation 
(30) such that 

ä   =   M.tr (32) 

where M is a fourth-order damage effect tensor and is a function of the second 
order symmetric tensor <j>. The effective Cauchy stress tensor ä need not be 
symmetric or frame invariant. However, the symmetrized effective Cauchy stress 
tensor ä used here is given by (Lee et al.   [13]) 

°a = gfotOki ~ ^y)"1 + (*« ~ tfö)"1*«] (33) 

0 is a second rank tensorial generalization of the scalar function # given by equa- 
tion (30). The stress given by equation (32) is frame independent. Utilizing the 
symmetrization procedure outlined by equation (33), a 6 by 6 matrix form of tensor 
M is derived by Voyiadjis and Kattan [23]. However, the fourth order tensorial 
form of M is utilized in this work. 

In order to find the incremental damage tensor m, one can use equation (32). 
The rate (incremental) expression of this equation can be written as follows 

ö = M : a + M : a (34) 

The superposed dot implies the material time differentiation. In order for equation 
(34) to be homogeneous in time of order one (i.e stress-rate independent) M should 
be a linear function of &. This is demonstrated by the following expression 

4> = X : & (35) 

Since M is a function of <f>, one obtains therefore 

Mijki = ^%? (36) 

Consequently by substituting equations (35) and (36) into equation (34), the fol- 
lowing relation may be written in the form 

a  =   m : & (37) 

where m represent the fourth order incremental damage tensor and is given by 
Voyiadjis and Guelzim [22] 

mau = Mijkl + GijpgkifTpq (38) 

where 

G..    _ 9Mijkl 
^ijpgrs —     Q ,       Apqr» {OX) 

OCPpq 

The explicit expression for the fourth order tensor X in equation (39) is given in 
Section 4.4. The proposed damage model was used successfully for both monotonic 
and cyclic loads Vojiadjis and Ganesh  [25] 
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4    Theoretical Formulation 

4.1    Basic Assumptions 
In this work, CQ denotes the initial undeformed and undamaged configuration of a 
single laminate while C0^ is the initial undeformed and undamaged subcell sub- 
configuration of a single laminate. The composite material is assumed to undergo 
elasto-plastic deformation and damage due to the applied loads. The resulting 
overall configuration for a single laminate is denoted by C. Damage is expressed 
by generalizing the concept proposed by Kachanov [12]. The fictitious configu- 
rations C^ is obtained from C^ by removing the different types of damages 
that the corresponding subcell (ßy) has undergone due to the applied stresses. 
The total or incremental subcell stress at configuration C(^ is converted to the 
respective total or incremental stress at the fictitious configuration C^ through 
the damage tensor M("7) or m(^ respectively. The incremental damage tensor 
rnSW reflects the damage related that subcell only. Following this local damage 
description, local-overall relations are used to transfer the local damage effect to 
the whole composite system in configuration C. This is accomplished through the 
stress and strain concentration tensors of the subcells. 

The coupled formulation of plastic flow and damage propagation is quite 
complex due to the presence of the two different dissipative mechanisms that in- 
fluence each other. This could be indicated by the fact that the position of the slip 
planes affect the orientation of nucleated microcracks. A phenemological model 
of interaction can then be applied. In this work use is made of the concept of 
the effective stress (Lemaitre) [14]. Making use of a fictitious undamaged system, 
the dissipation energy due to plastic flow in this undamaged system is assumed 
to be equal to the dissipation energy due to plastic flow in the damaged system. 
The damages at the single laminate level are described separately by the damage 
in the subcells according to the material in the subcells. The subcell incremental 
damage tensors, m(/S7), is better suited for use in the formulation of the constitu- 
tive equation of the damaged material behavior due to the incremental nature of 
plasticity. 

In this work, direct tensor notation is employed whenever possible. The ten- 
sors are denoted by the bold face letters. The following notation wherever possible 
for tensor operation is followed throughout the paper for the second-rank tensors 
U and V and the for the fourth-rank tensors C and D. The following notation is 
used in this work U : V = tfy Vy, U.V = üy Vw> C : U = C^Uu, U.C = üyCy« 
and C \D — CijmnDmnki. 12 and J4 are respectively the second-rank and fourth- 
rank identity tensors: I2 — Sij and I4 = §(£&£;( + SüSjk) where tfy is known as 
the Kronecker delta. The transpose and inverse of tensors are denoted by the 
superscript "T" and "-1" respectively. 

11 



4.2    Local-Overall Relations of The Damage Tensors 
In this section the relations between incremental damage tensor m^ of subcells 
(/?7) and overall incremental damage tensor m of the composite medium are de- 
rived by using the fact that the average damaged stress rates & can be obtained 
as the average sum of the the damaged stress rates <r(^ of the subcells in the 
damaged configuration C(/37) and is given by the following relation 

ß=\ 7=1 

In equation (40) V is the total area of the representative volume element while 
Vßy is the area of the individual subcell in the damaged configuration. Subcell 
incremental damage tensor m^ can be introduced in a similar form to equation 
(37) such that 

#*) = mm . &m (41) 

where mS^ encompasses all the pertinent damages that the corresponding subcell 
undergoes. The effective subcell Cauchy stress rate o-(/?7) is related to the overall 
effective stress rate b in the composite through the stress concentration tensor 
Bm as follows 

&m = B^ : * (42) 

where the effective stress concentration tensor B is given in the following ex- 
pression by Paley and Aboudi [17] 

Bm = C{fh) : A{(h) : [C]"1 (43) 

where C( 7) is the effective stiffness tensor for the subcell, Ä^ is the undamaged 
strain concentration tensor for the subcell and the C is the overall undamaged 
effective stiffness tensor for the composite. One can solve &^ from equation (41) 
such that 

*<*> = [mW]-1: &m (44) 

Making use of relations (42) and (44) in (40), one obtains the following expression 

*4jE<w»lwr,'*lw'* («) 
0=17=1 

This equation can be easily written in a similar form to equation (37) where m 
represents the overall incremental damage tensor which reflects all types of damages 

12 



that the composite undergoes including that due to the interaction between the 
subcells. The resulting expression is given by 

m = 
0=1 7=1 

(46) 

This expression defines the cumulative incremental damage of the composite as 
a function of its subcell components.However, m may be expressed in terms of 
the fiber damage mf, the matrix damage mm, and the damage due to debonding 
mrf(Voyiadjis and Park,  [26]). 

4.3    Damaged Strain and Stress Concentration Tensors 
Concentration tensors do not remain constant as the composite undergoes 
damage. However, they are constant in the undamaged elastic domain. In this 
work undamaged concentration factors are modified for the incremental damage 
model in conjunction with the hypothesis of the equivalence of elastic strain en- 
ergy [20]. The effective elastic strain and stress concentration tensors are obtained 
by using the generalized cells model. The subcell strain rate tensors can be related 
to the overall strain rate tensor in the following way 

km = Äm : k (47) 

where fourth order tensor, Ä is the instantaneous strain concentration tensor for 
the subcell (ßj) and is given by equation (29). The undamaged stress concentration 
tensors B of the subcells are already defined in the previous section and their 
relations are given by equations (42) and (43). 

The damaged concentration tensors can be obtained in terms of the un- 
damaged concentration factors and incremental damage tensors in connection with 
the elastic energy equivalence, given by 

dD™ = du™ (48) 

or 

\dbm : dk{fh) = \d&W : «K<*> (49) 

Substituting equation (41) into equation (49), one obtains the following relation 

pr) = [mißr)]-1
: tf») (50) 
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The above equation can be written for the overall behavior in similar form as shown 
below 

k=[m]-1:e (51) # 

Consequently by combining equations (50) and (51) with equation (47), the relation 
between the damaged strain rate e^ of the subcell and the damaged strain rate 
€ can be obtained in the form shown below 

$ih) = Am. $ (52) 

where A^ is the damaged stress concentration tensor for subcell (ßy) and its 
expression is given by 

A™ = m W : Am : [m]"1 (53) 

Similarly by using equations (37) and (41) with (42), the damaged stress concen- 
tration tensor for the subcell can be given as follows 

&{fh) = Bißt) . & (54) 

where JB(^ is the damaged stress concentration tensor for subcell (^7) and its 
expression is given by 

Bißi) = [m(W]-i . Bi(h) : m (55) # 

4.4    Damage Criterion 
In order to study the evolution of damage in composite materials, one first needs ^ 
to investigate the damage criterion. The anisotropic damage criterion used here is 
expressed in term of a tensorial parameter h (Voyiadjis and Park, [26]). It is clear 
that the damage mechanism for each subcell of the composite materials should 
be accounted separately since each subcell can be occupied by a different type of 
material in addition their boundary and geometric conditions can be different for £ 
each subcell. Therefore one single damage mechanism cannot be considered for all 
subcells in the multiphase composite medium. The anisotropic damage criterion 
based on the Mroz theory [27] is generalized by Voyiadjis and Park [26] as follows 

g(M = gVh)(Y,K) = 0 (56) m 

or 

r^^W-l»» (57) 
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where 

Y{ßy) is the generalized thermodynamic force conjugate to the damage tensor 
0(07). The hardening tensor h^ is expressed as follows 

hP^U^ + V^ (59) 

where tensors I7(ß7) and V(^7) are defined for orthotropic materials in terms 
of the generalized Lame constant A(^7), A^7), xf^ and the material parameters 
^^^(W^IW, fr^fc^fc^sand r)i^\r)2{ßl),r)3ißnf) which are obtained 
by matching the theory with the experimental results. Voyiadjis and Park [26] 
used the following expressions for U^r) and V^. 

/Ai»h(ft)ft 0 0      \m 

U\™ = 0 W£)<> 0        ) (60) 
0 0 A.itoCJ)«*, 

and 

^Aii/i2      0 0   \ (07) 

V™ =      0     W     0 (61) 
'•j 

0 0      A3I/32 

K^ is the scalar representing the total damage energy and is given by the following 
relation 

Km = fYW : j>mdt (62) 
Jo 

or 

km = y(07) . $M (63) 

The generalized Lame constants are defined as follow (Voyiadjis and Park,  [26]). 

V*> = £f«(l-*<*>)* (64) 

E^ are the magnitudes of the effective moduli of elasticity along the principle 
axes defined along the direction of the fiber and transversely to them. In order 
to check the damaging state of the material, the following four steps are outlined 
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below by (Stumvoll and Swoboda [21]) 

p(/j7) < 0, (elastic unloading) (65) 

9m = 0,       ^l:Ym<0,     (elastic unloading) (66) 

9m = 0,       |^ : fr™«0,     (neutral loading) (67) 

gM = 0 9 JT) : Ym > 0,      (loading from a damaging state)       (68) 

The case corresponding to loading or unloading from an elastic state is given by 
relation (65). For elastic unloading it is represented by relation (66). In the case 
of neutral loading it is represented by relation (67). Finally for the loading case it 
is given by relation (68) from a damaging state. It is clear from the above outlined 
steps that, the damage criterion (g^ = 0) should be satisfied for the state of 
damage to occur. As mentioned before for the damage evolution of materials , dif- 
ferent types of micro-mechanics damage are considered for each subcell depending 
on the material properties within the subcell. In this work, for an elasto-plastic 
matrix, the subcell is assumed to undergo ductile damage while the elastic fiber in 
the subcell undergoes brittle damage and their total energy dissipation is different 
from each other. For the elasto-plastic matrix, two energy dissipative mechanisms 
of damage and plasticity are exhibited. Although the two energy dissipative be- 
haviors are not independent from each other, in this work it is assumed that energy 
dissipative due to plasticity and energy dissipative due to damage are not coupled 
with each other. The power of dissipation of the matrix material can be written 
in the following form 

nm = U(ßt)d + U((h)p (69) 

where U^^d is the damage dissipation and Tl^p is the plastic dissipation. It is 
assumed that plastic yielding is independent of the damage process, and therefore 
the later term can be replaced by its undamaged configuration and it can be 
expressed as follows 

flCMp = &m . pr) + 'ßm : ftWr) (70) 

where the term ß : ä(^ is associated with kinematic hardening. The associ- 
ated damage dissipation is given by 

rfw = Ym. $*) + Kmkm (71) 
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The term K^ K(/?7)
 is associated with isotropic damage hardening. The first 

author has also introduced [22] a coupled incremental damage and plasticity theory 
for metal matrix composites. One can use the calculus of the Function of several 
variables in order to introduce two Lagrange multipliers A: and A2 to form 
the function Q(^7) in the following form 

U(ßy) = uffli) _ Aufißt) _ Ajfty*» (72) 

In this equation, /(/?7)(ö-, ö) is the plastic yield function of the elasto-plastic matrix 
and ö(ß7) is the back stress tensor. The term p^7) is the damage potential which 
is a function of the thermo-dynamic force tensor Y(/S7) and the damage hardening 
parameter K

(/?7)
. One can extremize the function fi(/j7) to solve for the Lagrange 

multipliers k[ß7)and A^7). These necessary conditions are given in the following 
form respectively 

*^ = 0   md    *£L0 (73) 
öö-(^) 8Y{ßl) 

Making use of equations (70), (71) in equation (69) and using the calculus of 
functions, one can use the extremum relations in equations (73) to obtain the 
following expressions 

ttfrr)      i(ßi)9f(ßl) _Q (74) 

and 

^'-^'1^ = 0 (75) 

The Lagrange multiplier Af in equation (74) can be obtained by using the con- 
sistency condition for the yield function for the elasto-plastic matrix in conjunction 
with the Ziegler-Prager kinematic hardening rule. The corresponding yield func- 
tion is given by 

/WT) = h* - *)<*>: (a - *)<« - ÖÖ2 (76) 

where a^7) is given by 

A™« £<*>(*-fi)<« (77) 

and \1>^ is defined such that 

£<M = 36(«A[« (78) 
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In equation (78) b^ is the kinematic hardening parameter for the elasto-plastic 
subcells. The consistency condition of the yield function in equation (76) can be 
written in the following form 

f      s 0 (79) 

or 

Um-#" + %&>"»-<> o») 
This condition assures that in a plastic loading process the subsequent stress and 
deformation state remains on the subsequent yield surface. One can use this con- 
sistency condition together with the equations (77) and (78) in order to obtain 
A\  ' in the following form 

Al   ~ ff(waj(*/ (81j 

where the scalar quantity H is given by 

HUh) = 36(« ^L . (*(« _ &Uh)) (82) 

Equation (75) gives the incremental relation of the damage variable for each subcell. 
Similarly using the consistency condition of the damage potential g^\ one can 
obtain the parameter Ä2 7 . The corresponding damage consistency relation can 
be given as follows 

p^7) = 0 (83) 

where g^ can be defined as a function of g^ = g^^(Y,K) or g^^ = g^^(a,(f>,K). 
Equation (83) can be written as follows 

By substituting equation (63) and (75) into (84), the above equation can be ex- 
pressed in terms of the parameter A2      where 

One can solve for the parameter A2      from equation (85) such that 

(85) 

flg(fll,) . j.{ßi) 
KÄßl) _  dcFW*  (R v 
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Using relation (86) with (75) , the incremental damage evolution equation for the 
subcell (ßy) can be obtained in the following form 

where X(/?7) is the fourth order tensor such that 

a9(g-r) egty 
xm aYwa*™  (g8) 
•* ~   daw   .   Bgtfi)        6t,U>-<)V{fa) .   BQIM V     ; 

^:^yW + äfey     -et™ 

The thermodynamic force tensor Y^7) associated with damage can be ob- 
tained by using the enthalpy of the damaged materials. This energy equation is 
given by 

V^(a, <}>) = -tr^ : E^ty) : <r<*> - $m(a) (89) 

where   $(;97) is the specific energy due to kinematic hardening. E'^ is   the 
damaged elastic compliance tensor for the subcell. It can be expressed in terms of 
the undamaged compliance tensor E{ßl) and the damage tensor M(/37) such that 

E-Uh) = Mm . E~m : M^ (90) 

The thermodynamic force Y{ßl) of the subcell (ßy) is given as the partial derivative 
of enthalpy of the damaged material equation (89) with respect to the second order 
damage tensor <f>^ in the following expression 

v(07) = dy{fh (91) 

Making use of equations (89) and (90) in equation (91), one can write the thermo- 
dynamic force Y{/?7) explicitly (Voyiadjis and Park) [26] as follows 

If the material in the subcell [ßi] is elastic, one can easily see that the gradual 
degradation of the elastic material in the corresponding subcell is caused only 
through damage and consequently no plastic dissipation occurs in the material, 
that is IT* = 0 in equation (69). A similar procedure is followed as outlined before 
to investigate the damage evolution for elastic materials. 
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4.5    Overall Damaged Stiffness Tensor for the Model 
In this section, the elasto-plastic constitutive model for the damaged multiphase 
composite medium is obtained. The procedure can be outlined by the following 
steps. First one obtains the subcell (local) damage quantities in their respective 
damaged configuration C(/?7) from their undamaged relations such as, stress, 
strain concentration tensors, and undamaged effective stiffness of composite. These 
quantities can be obtained through the generalized cells model. This is followed 
by combining the (Nß by N7) subcell constitutive relations by using equation (40) 
in conjunction with the concentration factors in the damaged configuration C^7) 

in order to obtain the constitutive relation of the overall composite system in the 
damaged configuration C. 

One can start with by substituting equation (44) in equation (40).   The 
following relation is then obtained. 

ß-l 7=1 

The term a^ in equation (93) is replaced with the relation in equation (3), 
where the fourth order effective tensor C in the effective configuration is to be 
replaced by the corresponding stiffness tensor depending on the properties of the 
material in the respective subcells. The resulting expression is written as follows 

* = 7i;i;Wm^r1:eü,7):*(W (94) 
ß=l 7=1 

By substituting equation (50) and (52) into (94), finally one can obtain the follow- 
ing relation 

* = 7 E X>* {l™™]"1 : Cm : [m<*>]-1} : A™ : e (95) 
ß=l 7=1 L J 

or 

a = C : e (96) 

where C represents the instantaneous overall stiffness tensor of the multiphase 
composite medium in the damaged configuration C, and is given by 

C = hLEW™*™]"1 : &*] : [mW]"1 : A™ (97) 
ß=l 7=1 

From equation (97), one concludes that the overall stiffness tensor in the damaged 
configuration C can be expressed through its subcell (local) stiffness tensors and 
strain concentration factors in the damaged configuration C^\ 
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5    Numerical Simulation of the Model 
The numerical implementation of the proposed model is done for the special 

case of the unit cell model. The applicability of the incremental damage model is 
assessed herein by using the unidirectional metal matrix composite material. The 
damaged response of the subcells as well as for the overall composite system is 
obtained. 

The unit cell model used here assumes that the unidirectional array of 
fibers(SiC) extending in the Xx direction is elastic and isotropic while the ma- 
trix (Ti-14Al-21Nb) is elasto-plastic work-hardening material and constitutes the 
three subcell regions around the fiber. Table 1 gives the material properties of 
this composite. The loading is assumed applied incrementally along the fiber di- 
rection and damage is checked only for the elastic region. Plastic deformations 
are ignored in this example and is the topic of the companion paper by Voyiadjis 
and Deliktas, (1997) .The representative unit cell used here can be described us- 
ing non-dimensional quantities and the subcell volume fractions can be given as a 
function of its non-dimensional quantities (hi,h2,£i,£2 and h,£) such that 

r(u) _ Mi C<
12

) = — (98) c     "  h£ hi y   ' 

(21) _ h& c(22) _ Ma (99) 
c     ~  hi hi K   ' 

These non dimensional quantities can be related to the volume fractions of the 
fiber and matrix as follows 

J _ hit\ m _ h\J2 + hyix + hgij ..QQV 
& ~  hi        °   ~ hi K     ] 

The relations between hx and ix , h and i are known. The above non-dimensional 
quantities can be easily calculated from the phase volume fractions. 

In this work for simplicity, the fiber and the unit cell are assumed square 
i.e hi = i\ and h = i. Prom this assumption one can find the non-dimensional 
quantities in terms of the phase volume fractions as follows 

hi = Vcf      /i2 = l-\/c7 (101) 

Once the non-dimensional quantities are determined, the next step is to follow 
the procedure outlined in section (3.1) in order to obtain the strain concentration 
tensor Ä(ß7) of the subcells and the corresponding overall effective stiffness tensor 
C in the undamaged configuration. One can easily observe that in equation (27), 
the strain vector i, is reduced from {Nß Ny by 1) to a (24 by 1) vector form. The 
matrix Ac becomes a (24 by 6) matrix and can be partitioned into four, (6 by 6) 
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matrices where each one of them represents the strain concentration matrix of the 
corresponding subcell. This matrix is given as follows 

Ä^ = 

1 0 0 0 0 0 
A21 A& ^33 0 0 0 
A31 A32 >*33 0 0 0 

0 0 0 An 0 0 
0 0 0 0 ^55 0 
0 0 0 0 0 ^66 

1(07) 

(102) 

More elaborate information about the strain concentration matrix can be found in 
references [1, 17]. 

The damage evolution for the subcell of the proposed model is performed by 
following the formulation in section (4.4). The tensorial manipulation is preferred 
in the numerical solution in order to get more elaborate and consistent results. In 
the damage analysis of materials, the main objective is to satisfy the consistency 
condition (g = 0) at any state of damage. This phenomenon can be explained as 
follows. Loading of the material by an increment of stress in the damaged state 
causes the stress tensor to move to the subsequent damage surface, which defines 
the boundary of the current undamaged region and can be expressed by equation 
(77). A this state g is only a function of the three variables a, <f> and K. If the 
stress point lies within the undamaged region, no damage takes places, i.e. <j> = 0 
and K = 0. On the other hand if the state of stress at this point is increased by 
an increment of stress, the current state of stress will not be in equilibrium such 
that g(<r + da, 4>, K) > 0 which would mean that the current stress point has left 
the damage surface, which is impossible. 

In order to bring the stress point back on the damage surface, an increment 
of damage d<f> and dn are induced by equation (63) and (87) respectively. The 
current damage surface g(cr + da, <p + d(f>, K + d«) = 0 will then be satisfied. 

The numerical solution investigates the damage evolution for each subcell 
separately by using different damage parameters for different constituents of the 
metal matrix composite. Small stress increments are applied along the fiber di- 
rection. These damage parameters for the matrix and fiber are given in Table 
2. 

In this work, three subsequent configurations, the initial undeformed/undamaged 
C0, the damaged C and undamaged/deformed C are shown in Figure 4. In the 
one dimensional state of stress, the relation between the scalar value of the overall 
damage and the subcell damage can be obtained by assuming that the volume 
fractions of the material in the initial configuration configuration C0 and in the 
damaged configuration C to be the same. The volume fractions for these three 
configurations are given as follows 

cfl = 
10<^ 
Ao 

Am 
c = 

ÄW 
(103) 
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where c0 = c is assumed. One can express the total area of each configuration as 
a sum of the areas of the subcells such that 

0,7=1 0,7=1 0>T=1 

Making use of equation (31) in (104), one can obtain the following relation 

(1 - <f>)A = £ (1 - 4>^)A{fh) (105) 
0,7=1 

By dividing both sides of above equation by A and simplifying, the following 
expression is obtained 

* = J2 ^£V> (106) 
0,7=1 

if the term ^- is replaced by the initial volume fraction c0, the above equation 
yields the following expression 

0,7=1 

The program output gives the damage response of the material in each subcell 
as well as the overall. In Figure 5, different values for the parameter v are used 
to plot the damage criterion, g, versus the stress in order to study the sensitivity 
and robustness of this parameter. For the range of values used here 1.8X10" 3 
to 8A10~4 the behavior of the parameter is quite robust. In Figure 6 different 
values for the parameter v are used in order to plot the damage variable <f> versus 
a for the subcells (12) and (22). These subcells are chosen in order show how 
the damage can vary in each subcell even though both cells may have the same 
material properties. This implies that the boundary and geometry conditions are 
effective in analyzing the damage of the subcells. 

In Figures 7 and 8 the variation of parameters rj and f is studied by plotting 
the damage versus the stress. It is observed that a 0.2 change between the different 
values of 7? is more sensitive to the damage behavior of the material than a difference 
in £ values of 0.05. The corresponding parameters rj and £ are evaluated for the 
fiber in subcell (11). It is observed that for r\ values between 0.1 and 0.06 and for 
£ values between 0.48 and 0.52, the material is quite sensitive to damage, which is 
indicated in Figures 9 and 10 respectively. 

In Figure 11 the damage versus the stress is plotted for the different subcells 
together with the overall damage in order to study the local versus the overall rela- 
tion. The model gives the expected results such that the overall damage behavior 
is the average of the local ones. 
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Finally, the stress strain curves for the subcells and for the overall compos- 
ite are plotted and compared with their undamaged curves in Figure 12. It is clear 
that there is a reduction in the stiffnesses of the material with an accompanying 
non linear behavior after the damage is initiated in the material. 

6    Summary and Conclusions 
The main objectives of this work is to incorporate damage in the generalized 

cells model in order to predict the elasto-plastic damaged behavior of the metal 
matrix composites, and also to investigate the applicability and reliability of both 
the generalized cells model and the incremental damage model. The example 
solved in the previous section demonstrates the ability to properly interpret damage 
through the proposed approach. 

The proposed study can be summarized as follows. The undamaged consti- 
tutive relations are obtained using the generalized cells model. This model imposes 
the continuity of the displacement and traction rates at the interfaces on the aver- 
age basis. For elasto-plastic materials within the subcell, a von Mises yield criterion 
with an associated Ziegler Prager kinematic hardening rule is used here in order to 
obtain the undamaged elasto-plastic stiffness of the material in the corresponding 
subcell. The fourth order damage tensor M and the incremental damage tensor 
m are introduced for each subcell separately (rather than a two phase). The 
undamaged quantities are then transformed in to the corresponding damaged ones 
by using the damage tensors. 

The anisotropic damage criterion is used here and the damage evolution 
of each subcell is considered separately. The challenging part of this work is to 
evaluate the eighth order damage tensor. Another important part in this work is 
to to satisfy the consistency condition at any increment of loading in the damage 
state. In this work, the eighth order tensor is calculated correctly by using MAPLE. 
The consistency condition is satisfied by using the numerical solution procedure 
outlined previously Finally the overall damaged stiffness tensor for the model is 
obtained in terms of its subcell damaged constitutive relations. 

The numerical solution is performed for the case of a unit cell in the elas- 
tic domain by applying a monotonic increment of load. The proposed work is 
computationally efficient in predicting the damaged behavior of the material. The 
applicability and reliability of the incremental damage model has been established. 
Using the generalized cell model allows one to predict more accurately the damage 
in the subregions as well as in the overall composite. 

In this work an example pertaining to the elastic analysis of a single lam- 
ina is presented. In Part II of the companion paper of this work (Voyiadjis and 
Babur, [11]), the proposed model is used for the elasto-plastic analysis with dam- 
age for both a single lamina and laminated plates. The numerical results are also 
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Table 1: Material Properties 

Matrix(Ti-14Al-21Nb) Fiber(SiC) 

Modulus 8X104 Mpa 41X104 Mpa 

Poisson's Ratio 0.30 0.22 

Initial Volume Fraction 0.65 0.35 

Table 2: Local Damage Parameters 

Matrix Damage Fiber Damage 

»7i 0.08 0.06 

V2 0.08 0.06 

m 0.08 0.06 

6 0.55 0.52 

6 0.55 0.52 

6 0.55 0.52 

V\ 0.0013 0.001 

v* 0.0013 0.001 

V3 0.0013 0.001 

compared with experimental data. 
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